SIDES V&

NASWA State Information Data Exchange System
In Partnership with USDOL

DEVELOPER GUIDE

PART C - DEVELOPMENT STEPS

Warning: This is a redacted version of the SIDES Developer Guide and is
NOT the latest version. For development, log into the Members Site and
obtain the latest version.

Version: 2.3
Date: February 22, 2017

Copyright © 2017, National Association of State Workforce Agencies.

All Rights Reserved.

Revision History

Date

Version

Description

Author

8/20/2010

1.0

Version 1.0

SIDES Team

9/27/2010

1.1

Updated: Part C — Development
Steps.

Added discussion on
Combined.xsd to document. See
Sections 3.3, 3.3.1.4, and 4.6.1.

Enhanced the description of a
GUID. See Section 4.2.2.

Enhanced discussion on
certification test data files to
indicate that connectors may need
to edit certification test data files.
See Section 8.1.1.1.1.

SIDES Team

12/09/2010

1.2

Updated: Part C — Development
Steps.

Under section 9.1, Common
Mistakes, two new sections were
added.

Section 9.1.7 clarifies he
interpretation of numeric fields
used to store money values.

Section 9.1.8 provides guidance on
populating the
StateEmployerAccountNbr field so
employers and TPAs can use this
data to look up employer
information in their automated
systems.

SIDES Team

4/7/2011

2.0

Added Earnings Verification
requirements, modified
requirements to be specific to their
exchange, added requirements
from CCB#9 (C-2.3.3.1-4, 2.3.3.1-
5, and 2.3.3.1-6, added Model
Connector.

SIDES Team

5/20/2011

2.1

Updated Part C. Added Employer
Model Connector; Jax-WS Model
Connector and .Net Model
Connector; Corrected SOAP
header information relating to the
Earnings Verification exchange

SIDES Team

SIDESY

Date

Version

Description

Author

11/17/2011

2.2

Updated Part B.

Added section C-2.10 SEW and
added in the requirement to specify
the size of the SEW custom logo to
C-2.10.1.

Identified requirements met
through the use of the SIDES
Model Connector.

SIDES Team

2/22/2017

2.3

Updated SIDES Logo

SIDES Team

SIDESY

TABLE OF CONTENTS

1 INTRODUCTION ...ttt e e e e e e e e e e e eenn e e e eennnneeeees 8
2 INITIAL SETUP INSTRUCTIONSooi e 10
St U 1 TSRO 10
3 A —-COLLECT AND ARRANGE DAT A .t 11
3.1 DAta REGQUITEIMENTSouiitiiiiiiteietiite ettt b ettt b et b b e e bt s e st eb e sb e st e bt s b e s e eb e sb e st et e sb e s e et e nb e e ebenneseebenbe e 11
K0 Y, | RO 12
3.2.1 Sample State Separation REQUESTciiiiiriiieiiiiese bbb 12
3.2.2 Sample Employer/TPA Separation RESPONSE..........eiuiiiirieirieieise ettt bbb 13
3.3 Sample State Earnings Verification REQUESTccouiiiiiiiiii et 14
3.4 Sample State Earnings Verification RESPONSE ..ottt 14
BiD XD it E £ h R R R R £ R R £ R R £ R R R SRR b bR R R R b bR e R bbb e bt s 17
3.5.1 Separation INFOrmMation XSDcoiiiiiiie ittt sae e re s 17
3511 XED IS ..ttt bbbt bbbttt 18

3.5.2 Earnings VErifiCation XSDccciiiiiiiie ittt ettt ettt e st et e e e aeesae e e sneenneeneenes 18
3521 XED IS ...ttt bbbttt 19

3.5.3 NUINEMPLY VAIUES ...ttt ettt te e te e e ae e st e s ba e be e be e s aeesaesteesneenaeenreanes 19
KR I - (- SRR 19
KR T |V 1O 1 OSSPSR 20

K TR TL G N = - (ot | T=To I 7 v OSSP 20

K TG T 1] PSSR 22
3.7 BUSINESS RUIESecviciieieie ettt sttt et e e te st e e te e st e s et e s e se e tesReaseeseenseseene e eenbenaesreeneeeensnnennrens 22
4 B -BUILD THE CONNECTOR: PREPARING THE MESSAGEcceevvnnneee. 24
4.1 Messaging Overview — Post, PUIl, @Nd PUSKooiiiir e 24
O R o O TP PO P PP OUPTPTROPRN 24
St U || S 24
Nt N = 1 oSS 25

SIDESY

B LA SOAP .. e Rt et r et n e nr e 25

AV, - TS1ST: To [To @] a[oT o] <SSR 26
421 UNQUE ID .ottt bttt b e ekt b et b e bt R bt R e Rt R e bt be b bR b e n et 26
4211 SEAE UNIQUE DS ...ttt bbbt bbbt b e nb et eb bbb nb et abenreneas 26
4212 EMPIOYEIr/TPA UNIQUE IDS ...ttt 26

4.2.2 File and RECOI GUIDSociiiiieiieieie ettt ettt s e ettt et e et esb e be st ebeereeneeneenne e e 27
4.2.3 SOAP TranSaCtion NUMDETccoiiiiiie ittt sttt st st besbe e et e eesbesbesbesbeeneeneeneesee e e 27
4.2.4 Broker Record Transaction NUMDETcoiiiiioiiiee et s 27
4.2.5 MESSAGE COUBSecuitiieteite ettt ettt ettt ettt b e bbbt b e bbbt b e e bt e bbbt e bt e bt e bt e e bt e bt e bbb e bt bbbt b 28
4.25.1 Post-Acknowledgement MeSSage COUESc.cvveveiieriiieeeeeeieeeste e e ereeee e ste e sreeraeeeeeseesreseas 28
4.25.2 PUIl-RESPONSE MESSAGE COUES.....c.viiveitiiieeiierieie e st ste e et e et e e steste e s re e e e e aesbesbesresraeneeneenenreneas 28
4.25.3 PUll ACKNOWIEAGEMENT COUBSeuveveieiiiecieeieie ettt sttt et st e be e sneene e e e eesrenns 28

4.3 SOAP CUSEOM HEAUETS. .. .c.eiviieiietiiieietiiee ettt ettt ettt b bbbt st et e bt st et ebesbe e ebenbe s esenae e enes 29
431 SHALE POST ...t E Rt R e Rt R R Re R e e R r e e reanrenneenreen 30
4311 State POSt t0 CeNral BIrOKENooviiiie i 31
43.1.2 State Post to Central Broker — SIDES Employer WebSItecccccvvevieeiieiece e 31
4.3.1.3 Central Broker Acknowledgement t0 State POSE..........ccovevieiiieie i 32

S v |- 1| | USRS 33
4321 State Pull from Central Broker — Regular PUll.............ccoiiiiiiiieeees e 33
4322 State Pull from Central Broker — Re-Pull by StateSOAPTransactionNumber............ccccoeviinene 35
4.3.2.3 State Pull from Central Broker — Re-PUll DY Date ..ot 38

4.3.3 EMPIOYEITTPA POSE....ciiiiitiieeiiite ettt bbb bbbttt b ettt bbbt b et b 40
4331 Employer/TPA POSt t0 CeNtral BrOKEccooiiieiiiieiieee e 40
4.3.3.2 Central Broker Acknowledgement to EMpIlOYer/TPA POSt........ccoviieiieie e 41

O S 11101 (o)L= I = | S SPSSSR 42
43.4.1 Employer/TPA Pull from Central Broker — Regular Pullcccooveiiiii i, 42
4.3.4.2 Employer/TPA Pull from Central Broker — Re-Pull by EmployerTPASOAPTransactionNumber 44
4.3.4.3 Employer/TPA Pull from Central Broker — Re-Pull by Date..........ccccooveviiiiviiese e, 47

A4 SOAP PAYIOAU ..ottt bbb bbb bbbt h bbbt b bbbt e 50
441 Separation INFOrMELIONcc.oiiiiiie bbbt 50
4411 POSE PAYIOA ...ttt bbbt bbbt bbbt b 50
4412 PUITPAYIOAA ...t bbbttt b ettt bbb 55

4.4.2 Earmnings VErifiCatION.........ooiiiiiciiee bbbttt bbb 64
4421 POSE PAYIOA ...ttt bbb bbbt bt r e ae e 64
4422 PUITPAYIOAA ...t ettt sttt bbb bbbt re bt re st ens 70

IS @ Y o AN 1 o o PRSPPSO 80
T 1Y I PSPPSR 81
A.8.1 WWSDL XSD ...iiiiiieitite ettt sttt sttt ettt st b et e bbb e b e e b b e Rt b b e Rt Rt R ket e R bt R e bt e Re bt ne et rens 82
4.6.2 SEALE WSDLu ittt ettt sttt sttt ekt Rt b bRt R et R e bt R et e Re bt Re bt nenret e 82
46.2.1 STALE POSE WSDL ..viiiiieiieiete ettt et sttt bbbt e st et e st e e ebenee e abennereas 82
46.2.2 Y= L= U] AT RS 83

4.6.3 EMPIOYEITTPA WSDL ..ottt e bbbttt sttt be et 84
46.3.1 EMPIOYEITPA POSEWSDL ...ttt ettt sttt 84
4.6.3.2 EMPIOYEITPA PUITWSDL ..ottt et 85

5 C—BUILD THE CONNECTOR: oottt e e e eaneees 87
6 D-CONNECT WITH THE CENTRAL BROKER: SENDING THE MESSAGE..... 88

SIDESY

oINS T=Y o o [T g Vo W0 1= Vo - OSSN 88

6.2 SAMPIE SOAP MESSAGE SENT.....ueiuieriiiiiieitistesieeteeeateee st estestestesteaseeseessetestestesteaseaseessessessessestessesseensessensessessens 88
T I A Xod TV [=To o 1= 4 g OSSR 88
SR Lo g B =] o] (=T gl 2 (=] (1] o SO 88

7 E—-CONNECT WITH THE CENTRAL BROKER: TESTING CONNECTOR

SO T W A RE ... e e e e e et e et e e eas 90
7.1 CoNNECLOr RESPONSTDIITTYc.civieeiiitiiieiicteiee ettt ettt b et b e bt b e sr e b nn e 90
A 1o] 3OS USTOS RPN 91

A% R |V oo L] B O3 1=t o] OSSR 91

7211 Setup State MOl CONNECTOT........c.iiviiiitiriiicte ettt eb et eb b 96

7212 L0 FIIES — POST ...ttt bbb bbbttt 111

7.2.1.3 LOG FIIES — PULL .ottt ettt sttt 113

7214 Setup Employer Model CONNECION............ciiiiiie et esraenreens 119

7.2.15 L0 FIIES — POST ...ttt ettt bbb et n et e ens 131

7.2.1.6 LOG FIIES — PULL .ottt sttt 133

A2 Y/ (oo (<] I @o] o1 1= Tox (o] g o [o OSSPSR 137
7221 SPring-WS MOUE] CONNEBCION........cciiiieiieiie ettt e e e steesreeaeeneesneesreenraens 137
7.2.2.2 Employer/TPA Model Connector — SPring WS ... 146

7.2.3 Model CONNECLOr - .NEL (CH) ...oveivieiietiieeect bbbttt bbb 154
7.23.1 State Model ConNNECLOr — NEBL (CH)....oueiveieiie e 154
7.2.3.2 Employer Model Connector — Nt (CH)ovvuiieiiiieeseese e 165

7.2.4 MOdel CONNECLOr — JAX-WS... ..ottt sttt ettt st e st e e s e bestesbesreaneetententenrens 174
7.24.1 State Model CONNECIOr — JAX-WS ... bbb 174
7.24.2 Employer/TPA Model Connector — JAX-WS ..ot 182

7.2.5 BRPT — BuSiness RUIE PrOCESSOr TOOI........ciuiiiiiiieiiiriesie sttt bbb e 189

7.25.1 BRPT INTEITACESeteite ittt bbbt b et b bbbt beeb e eene b e 190

7.25.2 Return from Business Rules Processing TOOIccviveiieieiie it 194

7.25.3 Example Invocation of the Business Rules Processing TOOIccccovvevieieerisie s 195

8 F—CONNECT WITH THE CENTRAL BROKER: CERTIFYING CONNECTOR

SO TW ARE ...t e e e e e e e e e e 197

8.1 CRITITICALION ...t bbbttt b bbbt bbbt bbbttt 197
8.1.1 Certification INFOrMALIONcviiiiiiie et bbb 198
8.111 Step 1 - DOWNI0AA TESE SUILE.......eiviieiiitericieite ettt 199
8.1.12 Step 2 - Conduct Preliminary Connector Certification TESHINGc.ccovverviiiensiieneeeee 206
8.1.1.3 Step 3 - Submit the SPreadsheet... ..o 211
8.1.14 Step 4 - Conduct Final Connector Certification TeSt..........cocoveiiieneiiiene e 211

9 COMMON MISTAKES, THINGS TO REMEMBER, KEY DEVELOMENT PITFALLS

... 213

LS R O0] 1 10 0 (o] AT\) =1 SRR 213
9.11 Nz Lo I o TR g 1o T g (0] 4 AT 213
9.1.2 Connector NOt @ PArtiCIPANToiiiiiiiiiie ittt bttt se e bbb e e b b sne 213
9.1.3 TNV 110 IO YA ANt (o] [T 213

SIDESY

9.1.4 INCOITECH/MISSING SECUIILY ©r.vviveeriiieieitisiese st eeet e et e e teste e e e e et e tesresteeseesse e e s e teseesresneeneennenseneenrens 213

9.15 Central Broker Not Having Up-to-Date REDACTED Informationcccceeveieveniiesiesiecie e sesnens 214
9.1.6 Date/Time 0N SErVEr NOt ACCUIALEcvrviviriiireiriaieiesrereesreie s nr e n e nn e 214
9.1.7 Interpretation of Standard Format for Money FieldsScocooiiriiiinininc s 214
9.1.8 State Employer ACCOUNT NUMDETciiiiiiitiiiiit ettt 214
9.2 THINGS 10 REMEIMDET ..ottt b bbb bbb bbbt sbe bbb 214
9.2.1 Existing Business System MOifiCAtIONS............ccuiiiiiiiiiiirieees s 214
0.2.2 EFTON HANAIINGeiiiiiitic bbb bbb bbbttt 215
9221 XML INJECTION 1.ttt bbb bbb bbbttt b bbbt b et b e 215

9.3 Key DeVvelopment PItfalls ..o 218
10 LIST OF FIGURES e e e e e e e eaas 219
11 LIST OF TABLES ... e e 220

SIDESY

1 INTRODUCTION

This document is the final part of the comprehensive Developer Guide package. Part C contains
technical guidance to assist you in building the connector to communicate with the Central
Broker. Please note that it is very important that you have addressed all of the issues outlined in
Part B — Connector Requirements before you start with this part.

The document is composed of the following:
e Initial Setup Instructions

e A -Collect and Arrange Data
o Data Requirements
o XML (includes samples)
o XSD
o File Size
o Business Rules

e B - Preparing the Message

o Messaging Overview — Post, Pull, and Push
o Messaging Concepts

o SOAP Customer Headers

o SOAP Payload

o SOAP Actions

o WSDL

e C - Securing the Message
o REDACTED
e D - Sending the Message

o Sending a message

o Sample SOAP Message
o Acknowledgements

o Non-broker Returns

e E - Testing the Connector Software

o Connector Responsibility
o Tools
= Model Connectors
= Business Rule Processor Tool (BRPT)

e F - Certifying the Connector Software

o Step 1 - Download test suite
o Step 2 - Conduct preliminary connector certification testing
o Step 3 - Submit the Spreadsheet

SIDESY

o Step 4 — Conduct Final Connector Certification Test
e Common Mistakes, Things to Remember, Key Development Pitfalls
e Listof Tables

Each section contains specific information and examples of how to ensure you are able to
successfully execute each process.

For the connector to interface with the SIDES Central Broker, the connector must obtain their
data from their backend system. This initial step is outside of the scope of the developer guide.
Once you obtain the data you need to put it into XML as prescribed by the SIDES XSDs. The
development steps documented herein will guide your development of a SIDES compliant
connector.

SIDESY

2 INITIAL SETUP INSTRUCTIONS

To connect to the SIDES Central Broker, the connector needs to obtain and configure the
appropriate URL to access the SIDES test and SIDES production environment. Public keys must
be exchanged between the connector and the Central Broker. The SIDES Broker
Administrator must set up the connector within the SIDES Admin Site.

2.1 URLs
The URLSs used by the connectors for all messaging with the Central Broker are:

e REDACTED [Separation Information production]
e REDACTED [Separation Information test]
e REDACTED [Earnings Verification production]

e REDACTED [Earnings Verification test]

2.2 Public Key Exchange - REDACTED
REDACTED

SIDESY.

10

3 A-COLLECT AND ARRANGE DATA

Prior to collecting and arranging data, the connector must perform data analysis and mapping
between their backend system, the Separation Information Exchange Format, and the Earnings
Verification Exchange Format (hereafter known only as Exchange Format). Once the analysis is
complete, the connector must extract data from their backend system and generate an XML file,
which will be packaged and delivered to the Central Broker. This section: describes SIDES data
requirements; introduces XML, XSDs; defines the date data type used by SIDES; introduces how
attachments are transmitted to the Central Broker using Message Transmission Optimization
Mechanism (MTOM); explains the backfilled data; specifies the SIDES file size; and articulates
the business rules that must be followed to participate in SIDES.

3.1 Data Requirements

The data required for the requests and responses is a set of predetermined data elements, each
having its own individual requirements along with its interaction with other elements. The
request and response data elements (the standard format) can be found in the SIDES
Implementation Guide. This Development Steps guide contains a technical discussion of the
information provided for each field in the Separation Information Exchange Format and the
Earnings Verification Exchange Format.

Note: For the latest version of Separation Information Exchange Format or
Earnings Verification Exchange Format, please visit the SIDES Website
(http://sides.itsc.org), and obtain the SIDES Implementation Guide, which
contains the Separation Information Exchange Format and Earnings
Verification Exchange Format.

There are two tables in the Exchange Formats. The first table outlines the data requirements for
the Request sent by a State. The second table outlines the data requirements for the Response
sent by an employer or TPA in response to the Request.

Table 1 describes the information specified for each request and response data element listed in
the Exchange Format.

The responsibility of the development team for a SIDES connector is to (a) ensure that, given the
information in the Exchange Format, the connecting system can populate all of this data with the
development team’s current back-end systems or future planned ones and (b) ensure their client
can pass all validations and business rules before they deploy to production.

Table 1 — Exchange Format

Column Name Definition

The “Sequence Number” is the identifier for the data element. It

Seq. Number helps identify which data element is being discussed.
Data Element Name The “Data Element Name” is the name of the data element.
Data Element Description ;};?n e]r)]tata Element Description” is the description of the data

SIDESYs

11

http://sides.itsc.org/

Column Name

Definition

Type and/or Format

The “Type and/or Format” is the format of the data element (i.e.
character, a numeric, a date or a base64Binary data field).

Field Size

The “Field Size” is the size of the data element. Depending on
what type of element it is, it may be a maximum size (2000
character string), or it may be the exact size (10 character date).

Field Required / Optional

“Field Required / Optional” tells whether the field must have an
answer for the data element. There are three types of data
elements: Required, Optional, and Conditional.

e Required means that an answer must be filled in.

e Optional means that an answer should only be filled in if
it makes sense for the state, employer, or TPA to fill in
that answer.

e Conditional means that an answer may be required or
optional depending on the answers to other data
elements. (See Business Rules for more information.)

Business Rules

“Business Rules” are the directives that must be met when filling
in this data element. These can include the reasons that will
make a conditional element required or restrictions on a date
field.

“Validation” is a check on the data to make sure that the data is

Validation in a consistent form and can be readable by all participants.
Comments/Notes “Comments” are general comments on the data element.
The “Values” column contains all the values that a data element
Values may have for those data elements that are restricted to a set of
values.
3.2 XML

XML was selected as the medium to implement the SIDES Exchange Format specification for the
transfer of the data between states, employers, and TPAs. XML allows the data to be defined in a

clear and concise manner.

State, employer, and TPA connectors must implement clients that can correctly communicate
using the SIDES messaging specification, per the current Requirements Baseline, system design,

and as elucidated in this guide.

3.2.1 Sample State Separation Request

<StateSeparationRequest>

<StateRequestRecordGUID>50000000000000000000000000003364</StateRequestRr

ecordGUID>

<SSN>000128475</SSN>
<ClaimEffectiveDate>2009-06-04</ClaimEffectiveDate>
<ClaimNumber>378620</ClaimNumber>
<StateEmployerAccountNbr>0064560</StateEmployerAccountNbr>
<EmployerName>JC PENNEY COMPANY INC</EmployerName>
<FEIN>794741844</FEIN>

SIDESY

<TypeofEmployerCode>3</TypeofEmployerCode>
<TypeofClaimCode>1</TypeofClaimCode>
<BenefitYearBeginDate>2009-06-04</BenefitYearBeginDate>
<RequestingStateAbbreviation>UT</RequestingStateAbbreviation>
<UIOfficePhone>8015264400</UIO0OfficePhone>
<UIOfficeFax>8015269394</UIOfficeFax>
<ClaimantLastName>FUKBPHM</ClaimantLastName>
<ClaimantFirstName>ELSA</ClaimantFirstName>
<WagesWeeksNeededCode>NA</WagesWeeksNeededCode>
<ClaimantSepReasonCode>99</ClaimantSepReasonCode>
<RequestDate>2009-06-07</RequestDate>
<ResponseDueDate>2009-06-17</ResponseDueDate>
<FormNumber>606C</FormNumber>

</StateSeparationRequest>

3.2.2 Sample Employer/TPA Separation Response

<EmployerTPASeparationResponse>
<StateRequestRecordGUID>00000000000000000000000000003364</StateRequestR
ecordGUID>
<BrokerRecordTransactionNumber>2001753</BrokerRecordTransactionNumber>
<SSN>000128475</SSN>
<ClaimgEffectiveDate>2009-06-04</ClaimEffectiveDate>
<ClaimNumber>378620</ClaimNumber>
<StateEmployerAccountNbr>0064560</StateEmployerAccountNbr>
<ClaimantNameWorkedAsForEmployer>Elsa
LKJFGRE2</ClaimantNameWorkedAsForEmployer>
<ClaimantJobTitle>Customer Service Associate</ClaimantJobTitle>
<SeasonalEmploymentInd>N</SeasonalEmploymentInd>
<EmployerReportedClaimantFirstDayofWork>2005-10-
11</EmployerReportedClaimantFirstDayofWork>
<EmployerReportedClaimantLastDayofWork>2008-10-
14</EmployerReportedClaimantLastDayofWork>
<EffectiveSeparationDate>2008-10-14</EffectiveSeparationDate>
<TotalEarnedWagesNeededInd>2</TotalEarnedWagesNeededInd>
<TotalEarnedWages>0</TotalEarnedWages>
<TotalWeeksWorked>0</TotalWeeksWorked>
<WagesEarnedAfterClaimEffectiveDate>0</WagesEarnedAfterClaimEffectiveDa
te>
<NumberOfHoursWorkedAfterClaimEffectiveDate>0</NumberOfHoursWorkedAfter
ClaimEffectiveDate>
<AverageWeeklyWage>0</AverageWeeklyWage>
<EmployerSepReasonCode>6</EmployerSepReasonCode>
<VoluntarySepReasonCode>1</VoluntarySepReasonCode>
<ClaimantActionsToAvoidQuitInd>N</ClaimantActionsToAvoidQuitInd>
<ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>
<VoluntarySepReasonComments>The claimant quit without giving JCPenney a
reason.</VoluntarySepReasonComments>
<PreparerTypeCode>E</PreparerTypeCode>
<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlus
Ext>
<PreparerContactName>Jay Johns</PreparerContactName>
<PreparerTitle>Project Manager</PreparerTitle>
<PreparerFaxNbr>9725312108</PreparerFaxNbr>
<PreparerEmailAddress>sample@jcpenney.com</PreparerEmailAddress>

</EmployerTPASeparationResponse>

SIDESY 13

3.3 Sample State Earnings Verification Request

<StateEarningsVerificationRequestCollection xsi:schemalocation="https://
REDACTED schemas EarningsVerificationRequest.xsd" xmlns="https://

REDACTED /schemas" =zmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<StateEarningsVerificationRequest>
<StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000
00003</StateEarningsVerificationRequestRecordGUID>
<RequestingStateAbbreviation>ST</RequestingStateAbbreviation>
<UIOfficeName>0ffice Name</UIOfficeName>
<UIOfficePhone>5555555555</UI0fficePhone>
<UIOfficeFax>5555555554</UI0fficeFax>
<UIOfficeEmailAddress>james.madison@state.gov</UIOfficeEmailAddress>
<StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>
<FEIN>123456789</FEIN>
<EmployerName>ACME</EmployerName>
<SSN>311111334</SSN>
<ClaimantLastName>Lastname</ClaimantLastName>
<ClaimantFirstName>Firstname</ClaimantFirstName>
<ClaimantMiddleInitial>M</ClaimantMiddleInitial>
<ClaimantSuffix>JR</ClaimantSuffix>
<NumberofWeeksRequested>5</NumberofWeeksRequested>
<EarningsVerificationWeekBeginDate>2010-08-
0l</EarningsVerificationWeekBeginDate>
<EarningsVerificationWeekEndDate>2010-09-
04</EarningsVerificationWeekEndDate>
<EarningsVerificationComments>This is a comment field for this Earnings
Verification Request</EarningsVerificationComments>
<RequestDate>2010-10-14</RequestDate>
<EarningsStatusCode>3</EarningsStatusCode>
<TipsStatusCode>1</TipsStatusCode>
<CommissionStatusCode>1</CommissionStatusCode>
<BonusStatusCode>1</BonusStatusCode>
<VacationStatusCode>1</VacationStatusCode>
<SickLeaveStatusCode>1</SickLeaveStatusCode>
<HolidayStatusCode>3</HolidayStatusCode>
<SeveranceStatusCode>3</SeveranceStatusCode>
<WagesInLieuStatusCode>4</WagesInLieuStatusCode>
<BarningsVerificationResponseCommentIndicator>1</EarningsVerificationRe
sponseCommentIndicator>
<ResponseDueDate>2010-10-28</ResponseDueDate>
<BarningsVerificationSourceCode>9</EarningsVerificationSourceCode>
</StateEarningsVerificationRequest>
</StateEarningsVerificationRequestCollection>

3.4 Sample State Earnings Verification Response

<?xml version="1.0"?>
<EmployerTPAEarningsVerificationResponseCollection
xsi:schemalLocation="https:// REDACTED /schemas
EarningsVerificationResponse.xsd" xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<EmployerTPAEarningsVerificationResponse>
<!-- Backfilled -->

SIDESY.

14

<StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000
00003</StateEarningsVerificationRequestRecordGUID>

<!-- Backfilled -->
<BrokerRecordTransactionNumber>5447</BrokerRecordTransactionNumber>
<!-- Backfilled -->
<RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

<!-- Backfilled -->

<UIOfficeName>Office Name</UIOfficeName>

<!-- Backfilled -->
<StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

<!-- Backfilled -->

<FEIN>123456789</FEIN>

<CorrectedFEIN>987654321</CorrectedFEIN>

<!-- Backfilled -->

<EmployerName>ACME</EmployerName>

<CorrectedEmployerName>Fly By Night</CorrectedEmployerName>

<!-- Backfilled -->

<SSN>311111334</SSN>

<ClaimantNameWorkedAsForEmployer>John Q
Public</ClaimantNameWorkedAsForEmployer>

<!-- Backfilled -->
<NumberofWeeksRequested>5</NumberofWWeeksRequested>
<!-- Backfilled -->

<EarningsVerificationWeekBeginDate>2010-08-
01</EarningsVerificationWeekBeginDate>

<!-- Backfilled -->

<EarningsVerificationWeekEndDate>2010-09-
04</EarningsVerificationWeekEndDate>

<!-- 1 - Claimaint works, 20 - Never Employed Here, 21 - TPA does not
represent Employer -->

<ClaimantEmployerWorkRelationshipCode>1</ClaimantEmployerWorkRelationsh
ipCode>

<!-- 1 Yes, has earnings, 2 - did not have earnings (100% Sales), 9 -

No Work -->
<EmployerEarningsCode>1</EmployerEarningsCode>
<FirstDayWorkedinPeriod>2010-08-01</FirstDayWorkedinPeriod>
<!-- 1 for Yes, 2 for No -->
<StillWorkingCode>2</StillWorkingCode>
<LastDayWorked>2010-09-04</LastDayWorked>

<!-- 1 - Layoff, 2 - Fired, 3 - Vol Quit, 4 - Other -->

<EmployerSepReasonCode>1</EmployerSepReasonCode>

<!-- When Request = 1 or (2 with Work/Relationship = 20/21 or Earnings
Code = 9) -->

<EarningsVerificationResponseComment>This employee was let go during
the time period</EarningsVerificationResponseComment>

<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-01</WeekBeginDate>
<WeekEndDate>2010-08-07</WeekEndDate>
<HoursWorked>15:00</HoursWorked>
<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
<EarningsPaidDate>2010-08-21</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-07</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

S

SIDESMS

15

<SeverancePaidDate>2010-08-07</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-08-07</WagesInlLieuPaidDate>

</WeeklyEarningsVerification>
<WeeklyEarningsVerification>

<WeekBeginDate>2010-08-08</WeekBeginDate>
<WeekEndDate>2010-08-14</WeekEndDate>
<HoursWorked>15:00</HoursWorked>

<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWWeek>
<EarningsPaidDate>2010-08-21</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-14</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWWeek>
<SeverancePaidDate>2010-08-14</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-08-14</WagesInLieuPaidDate>

</WeeklyEarningsVerification>
<WeeklyEarningsVerification>

<WeekBeginDate>2010-08-15</WeekBeginDate>
<WeekEndDate>2010-08-21</WeekEndDate>
<HoursWorked>15:00</HoursWorked>

<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWWeek>
<EarningsPaidDate>2010-08-21</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-21</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>
<SeverancePaidDate>2010-08-21</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-08-21</WagesInLieuPaidDate>

</WeeklyEarningsVerification>
<WeeklyEarningsVerification>

<WeekBeginDate>2010-08-22</WeekBeginDate>
<WeekEndDate>2010-08-28</WeekEndDate>
<HoursWorked>101:00</HoursWorked>

<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
<BarningsPaidDate>2010-08-28</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-28</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>
<SeverancePaidDate>2010-08-28</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-08-28</WagesInLieuPaidDate>

</WeeklyEarningsVerification>
<WeeklyEarningsVerification>

N

<2

SIDES Ve

<WeekBeginDate>2010-08-29</WeekBeginDate>
<WeekEndDate>2010-09-04</WeekEndDate>
<HoursWorked>5:00</HoursWorked>

<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
<EarningsPaidDate>2010-09-04</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-09-04</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>

16

<SeverancePaidDate>2010-09-04</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-09-04</WagesInLieuPaidDate>
</WeeklyEarningsVerification>
<!-- E - Employer, T - TPA —-->
<PreparerTypeCode>T</PreparerTypeCode>
<PreparerCompanyName>ABC TPA</PreparerCompanyName>
<PreparerTelephoneNumberPlusExt>5555555556</PreparerTelephoneNumberPlus
Ext>
<PreparerContactName>Mrs Sue Herman</PreparerContactName>
<PreparerTitle>Claims Administrator</PreparerTitle>
<PreparerFaxNbr>5555555557</PreparerFaxNbr>
<PreparerEmailAddress>sue.herman@Qabctpa.com</PreparerkEmailAddress>
<!-- Backfilled -->
<EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>
</EmployerTPAEarningsVerificationResponse>

</EmployerTPAEarningsVerificationResponseCollection>

3.5 XSD

On the client connector, as well as the Central Broker, the request and response files must
validate against the XML schema definition.

In order to implement the XML for SIDES data, the Exchange Formats were translated into XML
Schema Definition (XSD) files. These XSD files are used in SIDES to validate the state request
and the employer or TPA response.

Any violation of the XSD will result in an error indicating that the request or response was not
successfully processed and must be fixed by the sender and resubmitted to SIDES.

3.5.1 Separation Information XSD
There are three files that make up this definition for Separation Information.

Two main files make up the schema:
e SeparationRequest.xsd
e SeparationResponse.xsd

One support file contains elements that are defined in both files.

e RequestResponseTypeElements.xsd

There is one XSD file, combined.xsd, which is used to include other XSD files in the system,

and it does not contain any additional information. This file is required due to a problem
accessing the https:// REDACTED /schemas namespace in multiple files within the Java
libraries used in SIDES. The combined.xsd file is used internally by the Central Broker to allow
XSD checks to take place on all the SOAP messages and records sent in by the connectors. The
combined.xsd file may be used by connector software, but it is not necessary if the technology
and libraries used in the connectors’ implementation do not require it.

SIDESY.

e Combined.xsd
3.5.1.1 XSD Files
3.5.1.1.1 SeparationRequest.xsd
See REDACTED for the latest copy of the SeparationRequest.xsd.
3.5.1.1.2 SeparationResponse.xsd
See REDACTED for the latest copy of the SeparationResponse.xsd.

3.5.1.1.3 RequestResponseTypeElements.xsd

See REDACTED for the latest copy of the RequestResponseTypeElements.xsd.

3.5.1.1.4 combined.xsd
See REDACTED for the latest copy of the combined.xsd.
3.5.2 Earnings Verification XSD
There are three files that make up this definition for Earnings Verification.
Two main files make up the schema:
e EarningsVerificationRequest.xsd
e EarningsVerificationResponse.xsd
One support file contains elements that are defined in both files.

e EarningsVerificationTypeElements.xsd

The RequestResponseTypeElements.xsd mentioned above in Separation Information is reused..

There is one XSD file, combined.xsd, which is used to include other XSD files in the system,

and it does not contain any additional information. This file is required due to a problem
accessing the https:// REDACTED /schemas namespace in multiple files within the Java
libraries used in SIDES. The combined.xsd file is used internally by the Central Broker to allow
XSD checks to take place on all the SOAP messages and records sent in by the connectors. The
REDACTED file may be used by connector software, but it is not necessary if the technology

and libraries used in the connectors’ implementation do not require it.

SIDESY

18

3.5.2.1 XSD Files

3.5.2.1.1 EarningsVerificationRequest.xsd

See REDACTED for the latest copy of the EarningsVerificationRequest.xsd.
3.5.2.1.2 EarningsVerificationResponse.xsd

See REDACTED for the latest copy of the EarningsVerificationResponse.xsd.
3.5.2.1.3 EarningsVerificationTypeElements.xsd

See REDACTED for the latest copy of the EarningsVerificationTypeElements.xsd.
3.5.2.1.4 combined.xsd

See REDACTED for the latest copy of the combined.xsd.

3.5.3 Null/Empty Values

In many instances, the Exchange Format and the XSD indicate that an element can be null or is
not required. There are two main ways to represent null values in XML (strings being a special
case):

e One is to include xsi:nil="true” if the element in question is supposed to be null
e The other is to not include the element

For SIDES, the way to indicate null values is to not include the element. Therefore, any element
that does not have a value must not appear in the XML file sent to the Central Broker.

The ClaimantFirstName and ClaimantLastName data elements in the Separation Request are
required. Yet, there may not be a value that can be placed in them (in the case where the claimant
does not have either a first or last name); if this occurs, a space must be sent in as the element
value.

3.5.4 Dates

The XSD defines all of the Date data types as xs:date. This data type allows the definition of a
year, month, and a day to define the particular date. The Exchange Format date is restricted to
just the year, month and day (10 characters total). It is important to keep the xs:date field to just
the year, month, and day.

SIDESY

There are two exceptions to this rule where the full date/time is used. This is in the case of the
Broker Effective Date field and the DateStartedReceivingTransmission/
DateFinishedReceivingTransmission fields in the message acknowledgements. The Broker
Effective Date indicates when a record was received in the Central Broker and requires the use
of the date and time fields in xs:dateTime to record the exact time of record receptions and
transmissions by the Broker. The DateStartedReceivingTransmission/
DateFinishedReceivingTransmission are part of the acknowledgements and give the receiver the
date and time box around the transmission. The time zones for each of these elements will
always be in Greenwich Mean Time or an offset thereof.

3.55 MTOM

Message Transmission Optimization Mechanism, or MTOM, is a mechanism for transmitting
large binary attachments with SOAP messages as raw bytes, allowing for smaller messages.
Binary content often has to be re-encoded to be sent as text data with SOAP messages. MTOM
allows more efficient sending of binary data in a SOAP request or response. MTOM provides a
way of efficiently transmitting binary data such as images, PDF files, and MS Word documents,
between connectors.

The basis of MTOM used is the data type base64Binary (http://www.w3.0rg/TR/2004/PER-
xmlschema-2-20040318/#base64Binary).

This is defined in the Separation Request and Separation Response XSD as part of the
attachment occurrence:

<xs:element name="AttachmentData" type="xs:base64Binary" />
Connectors must use the base64Binary data type for their request/response attachments.
3.5.6 Backfilled Data

There are some backfilled data required in the response. This data shall come out of the request
record in the exact form it is received. Central Broker business rule checks determine if the data
matches between the request and response on these fields. If there is any difference, the Central
Broker rejects the record.

The fields that must be backfilled are given in Table 2 and 3.

Table 2 — Separation Information Backfilled Data

Separation
Element Name Il Notes
Exchange Format

Sequence Number

StateRequestRecordGUID B-59

SIDESY

http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/#base64Binary
http://www.w3.org/TR/2004/PER-xmlschema-2-20040318/#base64Binary

Element Name

Separation
Information
Exchange Format
Sequence Number

Notes

BrokerRecordTransactionNumber | B-60

SSN B-1

ClaimEffectiveDate B-2

ClaimNumber B-3 If this was not included in the
separation request, then it must not
be included in the separation
response.

StateEmployerAccountNbr B-4

Table 3 — Earnings Verification Backfilled Data

Element Name

Earnings
Verification
Exchange
Format
Sequence
Number

Notes

StateEarningsVerificationRequestRecordGUID | ER-1

BrokerRecordTransactionNumber ER-2
RequestingStateAbbreviation ER-3
UlIOfficeName ER-4
StateEmployerAccountNbr ER-5
FEIN ER-6
EmployerName ER-8
SSN ER-10
NumberofWeeksRequested ER-12

SIDESY

21

Earnings
Verification
Exchange
Format
Sequence
Number

Element Name Notes

EarningsVerificationWeekBeginDate ER-13

EarningsVerificationWeekEndDate ER-14

EarningsVerificationSourceCode ER-32

3.6 File Size

States may include multiple requests in a single XML file per employer or TPA to which they
want to send requests. This file may be up to 8MB in size, including all encoded attachments,

prior to encryption. If states have more than 8MB of data for that employer or TPA, they must
create multiple files.

Similarly, multiple employer/TPA responses to a state may be packaged into a single file within
the 8MB limit. If employers or TPAs have more than 8MB of data for a state (including encoded
attachments but prior to encryption), they must also create multiple files.

3.7 Business Rules

The Business Rules column in the Exchange Formats contains additional business rule validation
logic (“edits”) that cannot be defined in an XSD. To keep the data in SIDES consistent, the
Central Broker uses Java code to check every request and response record that is sent to it. The
Central Broker verifies that all of the business rules are followed. If it detects any of these rules
have been violated, it passes back an error code and message to the calling client that indicates
the rules that were violated.

An example of a Java implemented business rule (rather than a validation that can be
implemented within the XSD) is given below for the Separation Information exchange. This
example logs error 219 (see Part B — Connector Requirements) if the associated business rule is
violated.

if ((sep.getWorkingAllAvailableHoursInd() == null)
&& sep.getEmployerSepReasonCode () !'= null
&& (sep.getEmployerSepReasonCode () .intValue() == 11))
{
// Error

SIDESY

22

}

errorlList.add (new BRValidationError (219));

logger.debug ("Found error (219) in
WorkingAllAvailableHoursInd - it is null when
EmployerSepReasonCode equals 11");

In order to create a connector, the software must implement and execute all of the validations
and business rules specified in the Exchange Formats prior to sending the request or response to

the Broker.

SIDESY.

23

4 B-BUILD THE CONNECTOR: PREPARING THE MESSAGE

Prior to transmittal of the request or response data to the Central Broker, the connector must
extract the data from its backend system and generate an XML file. Once the XML file has been
created, the file must be packaged and delivered to the Central Broker. This section describes
the messaging framework that a connector can use to deliver messages to and receive messages
from the Central Broker.

4.1 Messaging Overview — Post, Pull, and Push

The communication between the Central Broker and the state, employer, and TPA connectors
is accomplished through SOAP over HTTPS using an HTTP request/response pattern.

There are three operations supported by the Central Broker — “Post,” “Pull,” and “Push.”
4.1.1 Post

In the Post operation, the connecting client instigates communication with the Broker. The
connectors “Post” their request and response files to the Central Broker (HTTP request) and
receive an acknowledgement in return (HTTP response).

Post Transaction:

1. Connector posts its request file (if a state), or response file (if an employer or TPA) to
the Broker in an HTTP request

2. Connector receives receipt of file in an HTTP response from the Broker
4.1.2 Pull

In the Pull operation, the connector asks for any available records from the Central Broker
(HTTP request), receives the waiting records (HTTP response) and sends back an
acknowledgement in return (HTTP request). Because there are three communications that take
place with this action, the process is broken up into two distinct HTTP request/response
transactions:

Pull Transaction (1):

1. Connector asks for its files (responses if a state, requests if an employer or TPA) in an
HTTP request to the Broker

2. Connector receives its files in an HTTP response from the Broker
Pull Transaction (2):

3. Connector acknowledges its receipt of file in an HTTP request to the Broker

SIDESY

24

Note: There is no HTTP response to the receipt HTTP transaction
(number 3 above). The Broker simply records the reception of the
receipt HTTP request or logs an error. (There is no “receipt to the
receipt.”)

4.1.3 Push

In the “Push” transaction, the Broker instigates communication to the employer or TPA client.
Immediately following each state “Post,” the Broker processes the incoming request file and then
sends it to the employer or TPA connector Web service instantaneously.

The “Push” transaction requires that the employer or TPA have a listening Web service and the
Broker be configured to operate in Push mode for that employer or TPA.

Push Transaction:

1. Broker pushes request file to employer or TPA in an HTTP request to the employer or
TPA connector, which has been implemented and configured to listen for Broker pushes

2. Broker receives receipt of a pushed request file in a HTTP response from the
employer/TPA

The “Push” transaction only occurs from Broker to employer or TPA for request files from the
states. There is no equivalent Broker-to-state “Push” for the “automatic” delivery of employer or
TPA response files to the states at this time. State connectors must use “Pull” to retrieve their
response files.

Employers and TPAs may choose to implement Pull or Push for their response files. This is a
free choice for each employer and TPA depending upon the process they wish to implement for
their backend systems.

The employer and TPA choice for Pull or Push transaction has no effect on the state clients. It
affects only the configuration of the Broker and whether a particular employer or TPA has a
client that implements Pull or Push mode. The state posts its requests to the Broker in the same
way, regardless of whether the employer or TPA receives them from the Broker via Pull or Push.

414 SOAP

SOAP is a protocol for exchange of information in a decentralized, distributed environment. It is
an XML-based protocol that consists of three parts: (1) an envelope that defines a framework for
describing what is in a message and how to process it, (2) a set of encoding rules for expressing
instances of application-defined data types, and (3) a convention for representing remote
procedure calls and responses.

SOAP messages are fundamentally one-way transmissions from a sender to a receiver. But
SOAP messages are often combined to implement patterns such as the request/response pattern,
where it provides for SOAP response messages to be delivered as HTTP responses, using the

SIDESY

25

same connection as the inbound request. This is the pattern used to accomplish the file
transfer/acknowledgement scheme, as overviewed in Sections 4.1.1, 4.1.2, and 4.1.3.

4.2 Messaging Concepts

There are a few concepts that need to be discussed before getting further into the messaging
process for SIDES.

4.2.1 Unique ID

Each state, employer, and TPA will be assigned a Unique ID for both the SIDES production

environment and the SIDES test environment. Please contact the SIDES Business Manager to
obtain your Unique IDs for SIDES. A complete list of Unique IDs is maintained on the SIDES
Website (http://SIDES.itsc.org). The Unique IDs of all the current participants are as follows:

4.2.1.1 State Unique IDs

Table 4 lists the participating states and their Unique IDs:

Table 4 - Unique IDs of Current Participating States

State Unique ID
REDACTED

4.2.1.2 Employer/TPA Unique IDs

Table 5 lists the participating employers and TPAs and their Unique IDs. The Employer/TPA
Unique ID is a ‘BR’ followed by a unique nine digit number. The Broker Administrator
assigns the nine digit number.

Table 5 - Unique IDs of Current Participating Employer/TPAs

Employer/TPA Unique ID
REDACTED

SIDESY

26

http://sides.itsc.org/

4.2.2 File and Record GUIDs

SIDES uses a Globally Unique Identifier (GUID). A GUID is a special type of identifier used in
software applications to provide a unique reference number. The value is represented as a 32
character hexadecimal character string, such as {21EC2020-3AEA-1069-A2DD-
08002B30309D}. The primary purpose of the GUID is to have a totally unique number. Ideally,
a GUID will never be generated twice by any computer or group of computers in existence. The
total number of unique keys (212 or 3.4x10%) is so large that the probability of the same number
being generated twice is extremely small. The SIDES team suggests GUIDs be generated using
utilities or function calls available within your development
framework.

NOTE: States must not

GUIDs are created by connectors for each “Post” transaction to | reuse a GUID unless it is was
the Broker and are used on both the XML file level (File used more than 10 years ago.

GUIDs) and the XML individual record level (Record GUIDS). %E;Drzsg‘r?é’gpéyrggurggsadat

was rejected by the Central

The File GUIDs are used on an entire XML file to uniquely Broker

identify that file.

The Record GUIDs are used within the XML on each record to
uniquely identify that record. Record GUIDs should be unique
with the domain of the connector and not just that file.

NOTE: Because of the
small chance that a GUID
will be repeated by different

. . states, employer/TPAs must
There are many GUID creation methods depending on the ensure that both the State

language and technology in use. Many of them will create the Request Record GUID AND
GUID with a ‘- in a few places such that it actually comes out | the State abbreviation (or

to be 36 characters long. Developers of connectors must be something similar) be used
aware that as the GUID for SIDES is defined as a 32-character when determining if a record
string, the ‘-* must be stripped before its use. is a duplicate.

4.2.3 SOAP Transaction Number

The Central Broker uses a SOAP transaction number (StateSOAPTransactionNumber and
EmployerTPASOAPTransactionNumber) as a unique identifier for a file as part of a “Pull”
transaction. These can be thought of like a FedEx or UPS tracking number. These numbers can
be used in calls to re-Pull a particular file in case of loss.

4.2.4 Broker Record Transaction Number

The BrokerRecordTransactionNumber is given to a single request record on entry into the
system and is generated by the Broker. This number uniquely identifies a request, even if
multiple copies of the same record are passed through the system (in this case, each record gets
its own BrokerRecordTransactionNumber). The BrokerRecordTransactionNumber must be used
on the response in order to connect the response with a particular request and, therefore, must be
consumed by employer and TPA connectors.

SIDESY

27

4.2.5 Message Codes

Each time an acknowledgement is sent, a message code is sent with it to indicate the status of the
transaction. These are the transmission-level message codes that go in the SOAP header as

discussed below in Section 4.3 - SOAP Custom Headers.

4.2.5.1 Post-Acknowledgement Message Codes

Table 6 — Post-Acknowledgement Message Codes

Code Message Notes

1 File Success Successful Transmission; no
rejects

2 File Failure File size too large; no
records in file; all records
failed

3 File Success with Rejected | Rejected records included

Records

4.2.5.2 Pull-Response Message Codes

Table 7 — Pull-Response Message Codes

Code

Message

Notes

File Contained in Payload

The file is contained in the
payload of the SOAP
Message

End Of Files

There are no files available
to download

4.2.5.3 Pull Acknowledgement Codes

Table 8 - Pull Acknowledgement Codes

Code Message Notes
1 File Success Successful transmission
2 File Failure Did not receive file; any file

SIDESY

28

problems

4.3 SOAP Custom Headers

This section discusses the contents of the custom SOAP headers of the various transactions that
occur in the Post, Pull, and Push processes.

The SOAP headers are one part of a SOAP message. The SOAP messages used contain
additional custom information in the SOAP headers. This information utilizes the messaging
concepts discussed in the previous Section 4.2 Messaging Concepts. Each type of transaction has
its own requirements and elements as discussed below.

The custom SOAP header information provided by the connecting client to the Broker is for
routing purposes, security purposes and, in the case of the Pull, the type of Pull required.

The custom SOAP header information provided by the Broker to the client is for security
purposes and, in the case of the Pull, for re-Pulling purposes.

The SOAP headers provided for each type of transaction are listed below.
e State Post (Section 4.3.1)
o State Post to Broker (for routing to specified employer or TPA)
o State Post to Broker (for routing to the SIDES Employer Web site)
o Broker Acknowledgement to state Post
o State Pull from Broker — Regular Pull (Section 4.3.2.1)
o State Request to Broker (Regular Pull)
o Broker Response to Request (Regular Pull)
o State Acknowledgement to Broker (Regular Pull)
e State Pull from Broker — Re-Pull by StateSOAPTransactionNumber (Section 4.3.2.2)
o State Request to Broker (Re-Pull by StateSOAPTransactionNumber)
o Broker Response to Request (Re-Pull by StateSOAPTransactionNumber)
o State Acknowledgement to Broker (Re-Pull by StateSOAPTransactionNumber)
e State Pull from Broker — Re-Pull by Date (Section 4.3.2.3)

o State Request to Broker (Re-Pull by Date)

SIDESY

29

o Broker Response to Request (Re-Pull by Date)
o State Acknowledgement to Broker (Re-Pull by Date)
e Employer/TPA Post (Section 4.3.3)
o Employer/TPA Post to Broker
o Broker Acknowledgement to Employer/TPA Post
e Employer/TPA Pull from Broker — Regular Pull (Section 4.3.4.1)
o Employer/TPA Request to Broker (Regular Pull)
o Broker Response to Request (Regular Pull)
o Employer/TPA Acknowledgement to Broker (Regular Pull)

e Employer/TPA Pull from Broker — Re-Pull by EmployerTPASOAPTransactionNumber
(Section 4.3.4.2)

o Employer/TPA Request to Broker (Re-Pull by
EmployerTPASOAPTransactionNumber)

o Broker Response to Request (Re-Pull by
EmployerTPASOAPTransactionNumber)

o Employer/TPA Acknowledgement to Broker (Re-Pull by
EmployerTPASOAPTransactionNumber)

Employer/TPA Pull from Broker — Re-Pull by Date (Section 4.3.4.3)

o Employer/TPA Request to Broker (Re-Pull by Date)

o Broker Response to Request (Re-Pull by Date)

o Employer or TPA Acknowledgement to Broker (Re-Pull by Date)
4.3.1 State Post

The following sections contain the custom header elements for a state Post to the Broker. Note
that the tables below that describe messages going to the Broker have a column that indicates
which fields are required. Tables that describe messages being returned from the Broker do not
have this column, as there is no responsibility on the client connector to populate these fields.
The client connector must handle whatever is returned by the Broker according to the header
specification.

SIDESY

30

4.3.1.1 State Post to Central Broker

Table 9 - State Post to Broker

Header Element | Required Definition Example
To Y The Unique ID of the employer or TPA BR000000003
to which the message is intended
Will always be ‘BR’ followed by nine
digits
From Y The Unique ID of the state where the uT
message originated
StateRequestFileG | Y The state-generated GUID applied to this | A42A1FBDAC9549
uiD message that can uniquely identify this AC7D8D3F45E404
file 0319
Size is 32 hexadecimal digits
4.3.1.1.1 SOAP Example - State Post to Central Broker:
< xmlns="https://REDACTED/schemas">BR000000003< >
< xmlns="https://REDACTED/schemas">UT< >
<
xmlns="https://REDACTED/schemas">
A42A1FBDAC9549ACTD8D3FA45E4040319< >
4.3.1.2 State Post to Central Broker — SIDES Employer Website
Table 10 - State Post to Broker - SIDES Employer Website
Header Element | Required Definition Example
To Y The FEIN of the employer or TPA to 123456789
which the message is intended
Size is nine numeric digits
From Y The Unique ID of the state where the NJ
message originated

SIDESY

31

Header Element | Required Definition Example
StateRequestFileG | Y The state-generated GUID applied to this | A42A1FBDAC9549
uiD message that can uniquely identify this AC7D8D3F45E404

file 0319
Size is 32 hexadecimal digits
Separation Y The SEIN of the employer or TPA to 123456789
Information Only which the message is intended. For those
states that do not use the SEIN, this must
SEIN equal the FEIN
Size is up to 20 digits
PIN Y The PIN to which the state wants to 435222169876

assign this request for this employer or
TPA

Size is up to 20 characters

4.3.1.2.1 SOAP Example - State Post to Central Broker — SIDES Employer Website:

< xmlns="https://REDACTED/schemas">123456789< >
< xmlns="https://REDACTED/schemas">NJ< >

<

xmlns="https://REDACTED /schemas">
A42A1FBDACY9549ACT7D8D3F45E4040319< >

< xmlns="https://REDACTED/schemas">123456789< >
< xmlns="https://REDACTED/schemas">435222169876< >

4.3.1.3 Central Broker Acknowledgement to State Post

Table 11 - Broker Acknowledgement to State Post

Header Element Definition Example
To The Unique ID of the state that sent the Post uT
From Will always be “Broker” Broker
StateRequestFileGUI | The state-generated GUID applied to the message A42A1FBDAC9549
D that uniquely identifies the file sent in to the Broker. | AC7D8D3F45E404
This is for verification purposes 0319

SIDESY

32

Header Element Definition Example

Size is 32 hexadecimal digits

MessageCode The acknowledgement code applied to the message |1
that indicates success or failure of the entire
transmission. See 4.2.5 for further information on
Message Codes.

Size is one digit

4.3.1.3.1 SOAP Example - Central Broker Acknowledgement to State Post:

< xmlns="https:// REDACTED/schemas">UT< >

< xmlns="https:// REDACTED/schemas">Broker< >

< xmlns="https://REDACTED
/schemas">A42A1FBDAC9549ACT7TD8D3F45E4040319<

< xmlns="https:// REDACTED/schemas">1< >

4.3.2 State Pull

Because of the nature of the HTTP request-response pattern, there is one request and one
response for each HTTP request-response transaction. Because three messages are sent between
the connector and the Broker on a Pull, there will be two request-response patterns needed to
accomplish the full Pull operation. (See Section 4.1.2 for an overview of this issue.)

4.3.2.1 State Pull from Central Broker — Regular Pull

The following sections contain the custom header elements for a regular state Pull from the
Broker.

4.3.2.1.1 State Request to Central Broker (Regular Pull)

Table 12 - State Request to Broker (Regular Pull)

Header Element | Required Definition Example
To Y Broker Broker
From Y The Unique ID of the state where this uT

message originated

PullCollection Y Signifies one of three Pull transactions 1
desired by the state

1 - indicates a regular Pull

SIDESY 33

Size is one digit

4.3.2.1.1.1 SOAP Example - State Request to Central Broker (Regular Pull):

< xmlns="https://REDACTED/schemas">Broker< >
< xmlns="https://REDACTED/schemas">UT< >
xmlns="https://REDACTED/schemas">1< >

4.3.2.1.2 Central Broker Response to Request (Regular Pull)

Table 13 - Broker Response to Request (Regular Pull)

Header Element Definition Example
To The Unique ID of the state that requested the uT
Pull
From The Unique ID of the employer or TPA from BR000000001

which these response records originated

StateSOAPTransactionNu | The unique number assigned to this file by the | 3565
mber Broker

MessageCode The acknowledgement code applied to the 1
message that indicates success or failure of the
entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

4.3.2.1.2.1 SOAP Example — Central Broker Response to Request (Regular Pull):

< xmlns="https://REDACTED/schemas">UT< >

< xmlns="https:// REDACTED/schemas">BR000000001< >

< xmlns="https://
REDACTED/schemas">3565< >

< xmlns="https://REDACTED/schemas">1< >

4.3.2.1.3 State Acknowledgment to Central Broker (Regular Pull)

SIDESY.

34

Table 14 - State Acknowledgement to Broker (Regular Pull)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the state from | UT

which this message originated

StateSOAPTransactionNumber | Y The 3565
StateSOAPTransactionNumber
that was returned in the
response for the regular pull

MessageCode Y The acknowledgement code 1
applied to the message that
indicates success or failure of
the entire transmission. See
4.2.5 for further information on
Message Codes.

Size is one digit

4.3.2.1.3.1 SOAP Example — State Acknowledgment to Central Broker (Regular Pull):

< xmlns="https:// REDACTED/schemas">Broker< >

< xmlns="https:// REDACTED/schemas">UT< >

< xmlns="https://
REDACTED/schemas">3565< >

< xmlns="https://REDACTED/schemas">1< >

4.3.2.2 State Pull from Central Broker — Re-Pull by StateSOAPT ransactionNumber

The following sections contain the custom header elements for a State Re-Pull by
StateSOAPTransactionNumber from the Broker.

4.3.2.2.1 State Request to Central Broker (Re-Pull by StateSOAPT ransactionNumber)

Table 15 - State Request to Broker (Re-Pull by StateSOAPTransactionNumber)

Header Element Required Definition Example
To Y Broker Broker
SIDESV

35

Header Element Required Definition Example
From Y The Unique ID of the state from | UT
which this message originated
PullCollection Y Signifies one of three Pull 2
transactions desired by the state
2 - Indicates a re-Pull by
StateSOAPTransactionNumber
Size is one digit
StateSOAPTransactionNumber | Y The 3565
StateSOAPTransactionNumber
that was returned in the response
for the regular pull on a previous
Pull request. This specifies the
file the State wants to re-Pull
4.3.2.2.1.1 SOAP Example - State Request to Central Broker (Re-Pull by
StateSOAPT ransactionNumber):
< xmlns="https:// REDACTED /schemas">Broker< >
< xmlns="https:// REDACTED /schemas">UT< >
< xmlns="https:// REDACTED /schemas">2< >
< xmlns="https:// REDACTED
/schemas">3565< >
4.3.2.2.2 Central Broker Response to Request (Re-Pull by
StateSOAPT ransactionNumber)
Table 16 - Broker Response to Request (Re-Pull by StateSOAPTransactionNumber)
Header Element Definition Example
To The Unique ID of the state from which this uT
message originated
From The Unique ID of the employer or TPA from BR000000001
which these response records originated
StateSOAPTransactionNu | The StateSOAPTransactionNumber that was 3565

mber

requested by the state

SIDESY

36

Header Element Definition Example

MessageCode The acknowledgement code applied to the 1
message that indicates success or failure of the
entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

4.3.2.2.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by
StateSOAPT ransactionNumber):

< xmlns="https:// REDACTED /schemas">UT< >

< xmlns="https:// REDACTED /schemas">BR000000001< >

< xmlns="https:// REDACTED
/schemas">3565< >

< xmlns="https:// REDACTED /schemas">1< >

4.3.2.2.3 State Acknowledgment to Central Broker (Re-Pull by
StateSOAPT ransactionNumber)

Table 17 -State Acknowledgment to Broker (Re-Pull by StateSOAPT ransactionNumber)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the state from | UT

which this message originated

StateSOAPTransactionNumber | Y The 3565
StateSOAPTransactionNumber
that was returned in the
response for the regular pull

MessageCode Y The acknowledgement code 1
applied to the message that
indicates success or failure of
the entire transmission. See
4.2.5 for further information on
Message Codes.

SIDESY

37

Header Element

Required

Definition

Example

Size is one digit

4.3.2.2.3.1 SOAP Example - State Acknowledgment to Central Broker (Re-Pull by
StateSOAPT ransactionNumber):

< xmlns="https:// REDACTED /schemas">Broker< >
< xmlns="https:// REDACTED /schemas">UT< >
xmlns="https:// REDACTED

<
/schemas">3565<

>

< xmlns="https:// REDACTED /schemas">1<

4.3.2.3 State Pull from Central Broker — Re-Pull by Date

The following sections contain the custom header elements for a State Re-Pull by Date from the

Broker.

4.3.2.3.1 State Request to Central Broker (Re-Pull by Date)

Table 18 - State Request to Broker (Re-Pull by Date)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the state from | UT
which this message originated
PullCollection Y Signifies one of three Pull 3
transactions desired by the state
3 - Indicates a re-Pull by Date
Size is one digit
StateSOAPTransactionNumber | Y This must not be included for

the first call by Date. On
subsequent calls, this must be
filled in with the
NextStateSOAPTransactionNu
mber returned on the previous
call in order to collect all
records on the date specified

SIDESY

38

4.3.2.3.1.1 SOAP Example - State Request to Central Broker (Re-Pull by Date):

< xmlns="https:// REDACTED /schemas">Broker< >
< xmlns="https:// REDACTED /schemas">UT< >
xmlns="https:// REDACTED /schemas">3< >

4.3.2.3.2 Central Broker Response to Request (Re-Pull by Date)

Table 19 - Broker Response to Request (Re-Pull by Date)

Header Element Definition Example

To Broker Broker

From The Unique ID of the state from which uT
this message originated

StateSOAPTransactionNumber The first StateSSOAPTransactionNumber | 3565
that was returned in the response for the
regular pull on that date

MessageCode The acknowledgement code applied to 1
the message that indicates success or
failure of the entire transmission. See
4.2.5 for further information on Message
Codes.

Size is one digit

NextStateSoapTransactionNumber | The next StateSOAPTransactionNumber | 3566
that was returned in the response for the
regular pull on that date. This header
will not be included in the response when
the last file in the data range is being
returned, indicating there are no more
files to be sent.

4.3.2.3.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by Date):

< xmlns="https:// REDACTED /schemas">UT< >

< xmlns="https:// REDACTED /schemas">BR000000001< >

< xmlns="https:// REDACTED
/schemas">3565< >

< xmlns="https:// REDACTED /schemas">1< >
< xmlns="https:// REDACTED
/schemas">3566< >

SIDESYa

39

4.3.2.3.3 State Acknowledgment to Central Broker (Re-Pull by Date)

Table 20 - State Acknowledgement to Broker (Re-Pull by Date)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the state from uT
which this message originated
StateSOAPTransactionNu | Y The StateSOAPTransactionNumber | 3565
mber that was returned in the response

for the regular pull

MessageCode Y The acknowledgement code applied | 1
to the message that indicates
success or failure of the entire
transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit.

4.3.2.3.3.1 SOAP Example - State Acknowledgment to Central Broker (Re-Pull by Date)

< xmlns="https:// REDACTED /schemas">Broker< >

< xmlns="https:// REDACTED /schemas">UT< >

< xmlns="https:// REDACTED
/schemas">3565< >

< xmlns="https:// REDACTED /schemas">1< >

4.3.3 Employer/TPA Post

The following sections contain the custom header elements for an employer or TPA Post to the
Broker.

4.3.3.1 Employer/TPA Post to Central Broker

Table 21 - Employer/TPA Post to Broker

Header Element | Required Definition Example
To Y The Unique ID of the state to which this | UT
SIDESV

40

Header Element

Required Definition

Example

message is intended

From Y The Unique ID of the employer or PA BR000000003
from which the message originated
Will always be ‘BR’ followed by nine
digits
EmployerTPAResp | Y The employer or TPA-generated GUID A42A1FBDAC9549
onseFileGUID applied to this message that can uniquely | AC7D8D3F45E404
identify this file 0319

Size is 32 hexadecimal digits

4.3.3.1.1 SOAP Example - Employer/TPA Post to Central Broker:

< xmlns="https:// REDACTED /schemas"> UT < >
< xmlns="https:// REDACTED /schemas"> BR0O00000003<

<

xmlns="https:// REDACTED
/schemas">A42A1FBDAC9549ACT7TD8D3F45E4040319<

4.3.3.2 Central Broker Acknowledgement to Employer/TPA Post

Table 22 - Broker Acknowledgement to Employer/TPA Post

Header Element Definition Example
To The Unique ID of the employer or TPA that sent the | BR0O00000003
Post
From Will always be “Broker.” Broker
EmployerTPARespon | The employer or TPA-generated GUID applied to A42A1FBDAC9549
seFileGUID the message that uniquely identifies the file sent to AC7D8D3F45E404
the Broker. This is for verification purposes. 0319
Size is 32 hexadecimal digits
MessageCode The acknowledgement code applied to the message | 1
that indicates success or failure of the entire
transmission. See 4.2.5 for further information on
Message Codes.
Size is one digit
SIDESV

41

4.3.3.2.1 SOAP Example - Central Broker Acknowledgement to Employer/TPA Post:

< xmlns="https:// REDACTED /schemas">BR000000003< >

< xmlns="https:// REDACTED /schemas">Broker< >

< xmlns="https:// REDACTED
/schemas">A42A1FBDAC9549ACT7TD8D3F45E4040319< >
< xmlns="https:// REDACTED /schemas">1< >

4.3.4 Employer/TPA Pull

Because of the nature of the HTTP request-response pattern, there is one request and one

response for each HTTP request-response transaction. Because three messages are sent between

the connector and the Broker on a Pull, there will be two request-response patterns needed to
accomplish the full Pull operation. (See Section 4.1.2 for an overview of this issue.)

4.3.4.1 Employer/TPA Pull from Central Broker — Regular Pull

The following sections contain the custom header elements for a regular state Pull from the
Broker.

4.3.4.1.1 Employer/TPA Request to Central Broker (Regular Pull)

Table 23 - Employer/TPA Request to Broker (Regular Pull)

Header Element | Required Definition Example
To Y Broker Broker
From Y The Unique ID of the employer or TPA BR000000003

from which this message originated

PullCollection Y Signifies one of three Pull transactions 1
desired by the employer or TPA

1 - Indicates a regular Pull

Size is one digit

4.3.4.1.1.1 SOAP Example - Employer/TPA Request to Central Broker (Regular Pull):

< xmlns="https:// REDACTED /schemas">Broker< >
< xmlns="https:// REDACTED /schemas"> BRO00000003< >
xmlns="https:// REDACTED /schemas">1< >

4.3.4.1.2 Central Broker Response to Request (Regular Pull)
SIDESV

42

Table 24 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the employer or TPA that BR000000003
requested the Pull

From The Unique ID of the state from which these uT
request records originated.

EmployerTPASOAPTrans | The unique number assigned to this file by the | 7350
actionNumber Broker

MessageCode The acknowledgement code applied to the 1
message that indicates success or failure of the
entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

4.3.4.1.2.1 SOAP Example — Central Broker Response to Request (Regular Pull):

< xmlns="https:// REDACTED /schemas"> BR000000003< >

< xmlns="https:// REDACTED /schemas">UT< >

< xmlns="https:// REDACTED
/schemas">7350< >

< xmlns="https:// REDACTED /schemas">1< >

4.3.4.1.3 Employer/TPA Acknowledgment to Central Broker (Regular Pull)

Table 25 - Employer/TPA Acknowledgment to Broker (Regular Pull)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the employer or | BRO00000003
TPA from which this message
originated
EmployerTPASOAPTrans | Y The 7350
actionNumber EmployerTPASOAPTransactionNu
mber that was returned in the
response for the regular Pull

SIDESY

43

Header Element

Required

Definition

Example

MessageCode Y

The acknowledgement code applied
to the message that indicates
success or failure of the entire
transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

4.3.4.1.3.1 SOAP Example — Employer/TPA Acknowledgment to Central Broker (Regular

Pull):

< xmlns="https:// REDACTED /schemas">Broker< >
< xmlns="https:// REDACTED /schemas"> BR0O00000003< >

<
/schemas">7350<

xmlns="https:// REDACTED

>

< xmlns="https:// REDACTED /schemas">1<

4.3.4.2 Employer/TPA Pull from Central Broker — Re-Pull by
EmployerTPASOAPT ransactionNumber

The following sections contain the custom header elements for an employer or TPA Re-Pull by
EmployerTPASOAPTransactionNumber from the Broker.

4.3.4.2.1 Employer/TPA Request to Central Broker (Re-Pull by
EmployerTPASOAPT ransactionNumber)

Table 26 - Employer/TPA Request to Broker (Re-Pull by EmployerTPASOAPTransactionNumber)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the employer or BR000000001
TPA from which this message
originated
PullCollection Y Signifies one of three Pull 2
transactions desired by the employer
or TPA
2 - Indicates a re-Pull by

SIDESY

44

Header Element Required Definition Example
EmployerTPASOAPTransactionNu
mber
Size is one digit
EmployerTPASOAPTrans | Y The 7350

actionNumber

EmployerTPASOAPTransactionNu
mber that was returned in the
response for the regular Pull on a
previous Pull request. This specifies
the file the employer or TPA wants
to re-Pull

4.3.4.2.1.1 SOAP Example - Employer/TPA Request to Central Broker (Re-Pull by
EmployerTPASOAPT ransactionNumber):

xmlns="https:// REDACTED /schemas">Broker< >

<

< xmlns="https:// REDACTED /schemas"> BR0O00000001<
< xmlns="https:// REDACTED /schemas">2<
<
/

schemas">7350<

xmlns="https:// REDACTED
>

4.3.4.2.2 Central Broker Response to Request (Re-Pull by
EmployerTPASOAPT ransactionNumber)

>

Table 27 - Broker Response to Request (Re-Pull by EmployerTPASOAPT ransactionNumber)

Header Element Definition Example
To The Unique ID of the employer or TPA from BR000000001
which this message originated
From The Unique ID of the employer or TPA from uT
which these response records originated
EmployerTPASOAPTrans | The EmployerTPASOAPTransactionNumber 7350

actionNumber

that was requested by the employer or /TPA

MessageCode The acknowledgement code applied to the 1
message that indicates success or failure of the
entire transmission. See 4.2.5 for further

SIDESV

45

Header Element Definition Example

information on Message Codes.

Size is one digit.

4.3.4.2.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by
EmployerTPASOAPT ransactionNumber):

<To xmlns="https:// REDACTED /schemas"> BR000000001< >

< xmlns="https:// REDACTED /schemas">UT< >

< xmlns="https:// REDACTED
/schemas">7350< >

< xmlns="https:// REDACTED /schemas">1< >

4.3.4.2.3 Employer/TPA Acknowledgment to Central Broker (Re-Pull by
EmployerTPASOAPT ransactionNumber)

Table 28 - Employer/TPA Acknowledgment to Broker (Re-Pull by EmployerTPASOAPT ransactionNumber)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the employer or BR000000001
TPA from which this message
originated.
EmployerTPASOAPTrans | Y The 7350
actionNumber EmployerTPASOAPTransactionNu

mber that was returned in the
response for the regular Pull

Size is 32 hexadecimal digits

MessageCode Y The acknowledgement code applied | 1
to the message that indicates success
or failure of the entire transmission.
See 4.2.5 for further information on
Message Codes.

Size is one digit

SIDESY

46

4.3.4.2.3.1 SOAP Example - Employer/TPA Acknowledgment to Central Broker (Re-Pull
by EmployerTPASOAPT ransactionNumber):

< xmlns="https:// REDACTED /schemas">Broker< >

< xmlns="https:// REDACTED /schemas"> BR000000001< >

< xmlns="https:// REDACTED
/schemas">7350< >

< xmlns="https:// REDACTED /schemas">1< >

4.3.4.3 Employer/TPA Pull from Central Broker — Re-Pull by Date

The following sections contain the custom header elements for an employer or TPA Re-Pull by
Date from the Broker.

4.3.4.3.1 Employer/TPA Request to Central Broker (Re-Pull by Date)

The first time this operation is called, the EmployerTPASOAPTransactionNumber is null and the
dates from which the connector wants to Re-Pull are included in the SOAP payload.

When the Broker replies with the first file, the Broker will include the next
EmployerTPASOAPTransactionNumber during that date range in a SOAP header attribute
(NextEmployerTPASOAPTransactionNumber).

In the next call to this operation, the caller includes this EmployerTPASOAPTransactionNumber
with the date range. This differentiates to the Broker the next call in the series from a brand new
Re-Pull by Date request.

The last file sent back to the connector is indicated by a null value for the next
EmployerTPASOAPTransactionNumber.

Table 29 - Employer/TPA Request to Broker (Re-Pull by Date)

Header Element Required Definition Example

To Y Broker Broker

From Y The Unique 1D of the employer or BR000000001
TPA from which this message
originated.

PullCollection Y Signifies one of three Pull 3
transactions desired by the employer
or TPA

3 - Indicates a re-Pull by Date

Size is one digit

SIDESY

47

Header Element

Required Definition

Example

EmployerTPASOAPTrans
actionNumber

Y This must not be included for the
first call by Date. On subsequent

nNumber returned on the previous

the date specified

calls, this must be filled in with the
NextEmployerTPASOAPTransactio

call in order to collect all records on

4.3.4.3.1.1 SOAP Example - Employer/TPA Request to Central Broker (Re-Pull by Date):

< xmlns="https:// REDACTED /schemas">Broker< >
< xmlns="https:// REDACTED /schemas"> BR0O00000001<
xmlns="https:// REDACTED /schemas">3<

4.3.4.3.2 Central Broker Response to Request (Re-Pull by Date)

Table

30 - Broker Response to Request (Re-Pull by Date)

>

Header Element

Definition

Example

To

Broker

Broker

From

The Unique ID of the employer or TPA
from which this message originated.

BR000000001

EmployerTPASOAPTransact

ionNumber

The first
EmployerTPASOAPTransactionNumber that
was returned in the response for the regular
Pull on that date

7350

MessageCode

The acknowledgement code applied to the
message that indicates success or failure of
the entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

NextEmployerTPASOAPTra
nsactionNumber

The next
EmployerTPASOAPTransactionNumber that
was returned in the response for the regular
Pull on that date. This header will not be
included in the response when the last file in
the data range is being returned, indicating

7351

SIDESY

48

Header Element Definition Example

there are no more files to be sent.

4.3.4.3.2.1 SOAP Example - Central Broker Response to Request (Re-Pull by Date):

<To xmlns="https:// REDACTED /schemas"> BR000000001< >

< xmlns="https:// REDACTED /schemas">UT< >

< xmlns="https:// REDACTED
/schemas">7350< >

< xmlns="https:// REDACTED /schemas">1< >
< xmlns="https:// REDACTED
/schemas">7351< >

4.3.4.3.3 Employer/TPA Acknowledgment to Central Broker (Re-Pull by Date)

Table 31 - Employer/TPA Acknowledgment to Broker (Re-Pull by Date)

Header Element Required Definition Example
To Y Broker Broker
From Y The Unique ID of the employer or BR000000001
TPA from which this message
originated.
EmployerTPASOAPTrans | Y The 7350
actionNumber EmployerTPASOAPTransactionNu

mber that was returned in the
response for the regular Pull

MessageCode Y The acknowledgement code applied | 1
to the message that indicates success
or failure of the entire transmission.
See 4.2.5 for further information on
Message Codes.

Size is one digit

4.3.4.3.3.1 SOAP Example - Employer/TPA Acknowledgment to Central Broker (Re-Pull

by Date)
< xmlns="https:// REDACTED /schemas">Broker< >
< xmlns="https:// REDACTED /schemas"> BR000000001< >
SIDESYs

49

<EmployerTPASOAPTransactionNumber xmlns="https:// REDACTED
/schemas">7350</EmployerTPASOAPTransactionNumber>

<MessageCode xmlns="https:// REDACTED /schemas">1</MessageCode>

4.4 SOAP Payload
4.4.1 Separation Information
4.4.1.1 Post Payload

A “Post” is defined (see Section 4.1.1) as sending a request or response to the Broker by a

particular connector. This section discusses the (pre-encryption) payloads in the SOAP message.

44.1.1.1 State Post Payload
4.4.1.1.1.1 Post to Central Broker Payload

The “Post” payload in the SOAP message is the data defined in the
StateSeparationRequestCollection defined in the Separation Request xsd.

<?xml version="1.0"?>

<StateSeparationRequestCollection xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">
<StateSeparationRequest>
<StateRequestRecordGUID>07000000000000000000000000099100</StateRequestRr
ecordGUID>
<SSN>000000546</SSN>
<ClaimgEffectiveDate>2008-11-16</ClaimEffectiveDate>
<ClaimNumber>0</ClaimNumber>
<StateEmployerAccountNbr>480616009</StateEmployerAccountNbr>
<EmployerName>TEAM AUTOMOTIVE LLC</EmployerName>
<FEIN>841461123</FEIN>
<TypeofEmployerCode>1</TypeofEmployerCode>
<TypeofClaimCode>1</TypeofClaimCode>
<BenefitYearBeginDate>2008-11-16</BenefitYearBeginDate>
<RequestingStateAbbreviation>CO</RequestingStateAbbreviation>
<ClaimantLastName>Fortyseven</ClaimantLastName>
<ClaimantFirstName>Mark</ClaimantFirstName>
<ClaimantMiddleInitial>A</ClaimantMiddleInitial>
<ClaimantJobTitle>Test Job Title 47</ClaimantJobTitle>
<ClaimantReportedFirstDayofWork>2004-05-
17</ClaimantReportedFirstDayofWork>
<ClaimantReportedLastDayofWork>2008-11-
l4</ClaimantReportedLastDayofWork>
<WagesWeeksNeededCode>NA</WagesWeeksNeededCode>
<ClaimantSepReasonCode>1</ClaimantSepReasonCode>
<RequestDate>2008-11-16</RequestDate>
<ResponseDueDate>2008-12-01</ResponseDueDate>
</StateSeparationRequest>
<StateSeparationRequest>
<StateRequestRecordGUID>07000000000000000000000000099993</StateRequestR
ecordGUID>

SIDESY.

50

<SSN>000000510</SSN>
<ClaimkEffectiveDate>2008-11-16</ClaimEffectiveDate>
<ClaimNumber>0</ClaimNumber>
<StateEmployerAccountNbr>480616009</StateEmployerAccountNbr>
<EmployerName>TEAM AUTOMOTIVE LLC</EmployerName>
<FEIN>841461123</FEIN>
<TypeofClaimCode>1</TypeofClaimCode>
<BenefitYearBeginDate>2008-11-16</BenefitYearBeginDate>
<RequestingStateAbbreviation>CO</RequestingStateAbbreviation>
<ClaimantLastName>Eleven</ClaimantLastName>
<ClaimantFirstName>Nate</ClaimantFirstName>
<ClaimantMiddleInitial>Z</ClaimantMiddleInitial>
<ClaimantSuffix>III</ClaimantSuffix>
<ClaimantJobTitle>MaximumCharacTest Job Title
26</ClaimantJobTitle>
<ClaimantReportedFirstDayofWork>2005-05-
15</ClaimantReportedFirstDayofWork>
<ClaimantReportedLastDayofWork>2008-11-
l4</ClaimantReportedLastDayofWork>
<WagesWeeksNeededCode>NA</WagesWeeksNeededCode>
<ClaimantSepReasonCode>99</ClaimantSepReasonCode>
<RequestDate>2008-11-16</RequestDate>
<ResponseDueDate>2008-12-01</ResponseDueDate>

</StateSeparationRequest>
</StateSeparationRequestCollection>

4.4.1.1.1.2 Central Broker Acknowledgement to State Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the
number of requests it received, the number in error, and the dates that it started receiving the
records and finished receiving the records. This verifies to the state that the Broker received the
desired file so it can move on to the next file.

< xmlns="https:// REDACTED
/schemas">

< >DOF7202142A448F0747E99F75CEQFC00<

>

< >63< >

< >0< >

< >2009-07-13T02:37:53.000-
04:00< >

< >2009-07-13T02:37:54.000-
04:00< >
< >

Note: The Broker also sends back custom SOAP header information that
tells the overall status of the message. This is defined in Section 4.3-
SOAP Custom Headers.

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the
Broker will also return to the state all of the information that it can on why each individual
request failed. The FailedSeparationRequest element defined in the separation request XSD will

SIDESVs. 51

present the Error Code and the Error Message of the error it found, as described in Part B,
Section C-2.8.

<FailedSeparationRequest>
<StateRequestRecordGUID>00000000000000000000000000099108</StateReques
tRecordGUID>
<ErrorOccurrence>
<ErrorCode>101</ErrorCode>
<ErrorMessage>XSD validation violation</ErrorMessage>
</ErrorOccurrence>
</FailedSeparationRequest>

Putting this together with the successful acknowledgement:

<StateSeparationRequestCollectionAcknowledgement xmlns="https:// REDACTED
/schemas">
<StateRequestiileGUID>DOF7202142A448F0747E99F75CEOFC00</StateRequestiilel
UID>
<FailedSeparationRequest>
<StateRequestRecordGUID>00000000000000000000000000099108</StateReques
tRecordGUID>
<ErrorOccurrence>
<ErrorCode>101</ErrorCode>
<BErrorMessage>XSD validation violation</ErrorMessage>
</ErrorOccurrence>
</FailedSeparationRequest>
<FailedSeparationRequest>
<StateRequestRecordGUID>00000000000000000000000000099935</StaterReques
tRecordGUID>
<ErrorOccurrence>
<ErrorCode>101</ErrorCode>
<BErrorMessage>XSD validation violation</ErrorMessage>
</ErrorOccurrence>
</FailedSeparationRequest>
<FailedSeparationRequest>
<StateRequestRecordGUID>00000000000000000000000000099999</StateReques
tRecordGUID>
<ErrorOccurrence>
<ErrorCode>101</ErrorCode>
<BErrorMessage>XSD validation violation</ErrorMessage>
</ErrorOccurrence>
</FailedSeparationRequest>
<FailedSeparationRequest>
<StateRequestRecordGUID>00000000000000000000000000099998</StaterReques
tRecordGUID>
<ErrorOccurrence>
<ErrorCode>101</ErrorCode>
<ErrorMessage>XSD validation violation</ErrorMessage>
</ErrorOccurrence>
</FailedSeparationRequest>
<NumberOfRequestRecordsReceived>63</NumberOfRequestRecordsReceived>
<NumberOfRequestRecordsInError>4</NumberOfRequestRecordsInError>
<DateStartedReceivingTransmission>2009-07-13T02:37:53.000-
04:00</DateStartedReceivingTransmission>
<DatelinishedReceivingTransmission>2009-07-13T02:37:54.000-

SIDESY.

52

04:00</DateFinishedReceivingTransmission>
</StateSeparationRequestCollectionAcknowledgement>

4.4.1.1.2 Employer/TPA Post Payload
4.4.1.1.2.1 Post to Central Broker Payload

The “Post” payload in the SOAP message is the data defined in the
EmployerTPASeparationResponseCollection defined in the Separation Response xsd

<?xml version="1.0"?>
<EmployerTPASeparationResponseCollection xsi:schemalLocation="https://

REDACTED /schemas REDACTED " xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<EmployerTPASeparationResponse>
<StateRequestRecordGUID>00000000000000000000000000008808</StateRequestR
ecordGUID>
<BrokerRecordTransactionNumber>2001000</BrokerRecordTransactionNumber>
<SSN>111111119</SSN>
<ClaimkEffectiveDate>2009-01-04</ClaimEffectiveDate>
<ClaimNumber>6369857</ClaimNumber>
<StateEmployerAccountNbr>16475004</StateEmployerAccountNbr>
<ClaimantNameWorkedAsForEmployer>Gloria Ann
LKJFGRE2</ClaimantNameWorkedAsForEmployer>
<ClaimantJobTitle>Customer Inquiry Rep</ClaimantJobTitle>
<SeasonalEmploymentInd>N</SeasonalEmploymentInd>
<EmployerReportedClaimantFirstDayofWork>2007-11-
05</EmployerReportedClaimantFirstDayofWork>
<EmployerReportedClaimantLastDayofWork>2008-10-
23</EmployerReportedClaimantLastDayofWork>
<EffectiveSeparationDate>2008-10-23</EffectiveSeparationDate>
<TotalEarnedWagesNeededInd>1</TotalEarnedWagesNeededInd>
<TotalWeeksWorkedNeededInd>1</TotalWeeksWorkedNeededInd>
<TotalEarnedWages>0</TotalEarnedWages>
<TotalWeeksWorked>0</TotalWeeksWorked>
<WagesEarnedAfterClaimEffectiveDate>0</WagesEarnedAfterClaimEffectiveDa
te>
<NumberOfHoursWorkedAfterClaimEffectiveDate>0</NumberOfHoursWorkedAfter
ClaimEffectiveDate>
<AverageWeeklyWage>0</AverageWeeklyWage>
<ClaimantActionsToAvoidQuitInd>N</ClaimantActionsToAvoidQuitInd>
<EmployerSepReasonCode>6</EmployerSepReasonCode>
<VoluntarySepReasonCode>1</VoluntarySepReasonCode>
<ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>
<VoluntarySepReasonComments>The claimant voluntarily gquit without
good cause stating, ‘i loved the time i worked here i had some family
emergencies that were out of my hands so i had some attendance issues but i
will say this is a good company to work for.’” A copy of the claimant’s
online electronically signed Reason for Resignation (Exhibit A) is attached
for your review. The claimant quit without giving a reason. Due to the manner
in which the claimant resigned, we were unable to determine any details
concerning the resignation. We maintain the claimant left for personal

)

SIDES

<z

#

53

reasons. We request relief from charges on this
claim.</VoluntarySepReasonComments>
<PreparerTypeCode>E</PreparerTypeCode>
<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlus
Ext>
<PreparerContactName>Jay Six</PreparerContactName>
<PreparerTitle>Project Manager</PreparerTitle>
<PreparerFaxNbr>9725312108</PreparerFaxNbr>
<PreparerEmailAddress>j6@jcpenney.com</PreparerEmailAddress>
<AttachmentID>0</AttachmentID>
</EmployerTPASeparationResponse>
</EmployerTPASeparationResponseCollection>

4.4.1.1.2.2 Central Broker Acknowledgement to Employer/TPA Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the
number of responses it received, the number in error, and the dates that it started receiving the
records and finished receiving the records. This verifies to the employer or TPA that the Broker
received the desired file so it can move on to the next file.

< xmlns="https://
REDACTED /schemas">
< >542A4AE2395FEDDF1EAA3ZES 7F2DFBCEOL
>
< >22< >
< >0< >
< >2009-07-22T03:13:50.000-
04:00< >
< >2009-07-22T03:13:50.000-
04:00< >
< >

Note: The Broker also sends back custom SOAP header information that
tells the overall status of the message. This is defined in Section 4.3- SOAP
Custom Headers.

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the
Broker will also return to the employer or TPA all of the information that it can on why each
individual response failed. The FailedSeparationResponse element defined in the separation
response XSD will present the Error Code and the Error Message of the error it found, as
described in Part B, Section C-2.8.

< >
< >00000000000000000000000000099943<
>
< >2001552<
>
< >
< >213< >
< >Business Rule violation - There must be a value

(Character - Size 1) for TotalWeeksWorkedNeededInd if WagesWeeksNeededCode =

SIDESY.

W< >

< >

Putting this together with the successful acknowledgement:

< xmlns="https://
REDACTED /schemas">
< >542A4AFE2395FEDDF1EAA3ZES7TF2DFBCEOL
>
< >
< >00000000000000000000000000099943<
>
< >2001552<
>
< >
< >213< >
< >Business Rule violation - There must be a value

(Character - Size 1) for TotalWeeksWorkedNeededInd if WagesWeeksNeededCode =
W< >

< >
< >
< >22< >
< >1< >
< >2009-07-22T03:13:50.000-
04:00< >
< >2009-07-22T703:13:50.000-
04:00< >
< >

4.4.1.2 Pull Payload

A “Pull” is defined (see Section 4.1.2) as sending a query to the Central Broker to allow the
Central Broker to send the connector all of the requests or responses it has waiting for it (in
multiple transactions if they are from different endpoints). This section discusses the (pre-
encryption) payloads in the SOAP message.

4.4.1.2.1 State Pull Payload
4.41.2.1.1 Pull from Central Broker

The StateSeparationResponseCollectionQuery defined in REDACTED WSDL (see Section 4.6)
is a complex type that allows the caller to specify one of three operations: a Pull, a Re-Pull by
StateSOAPTransactionNumber, and a Re-Pull by a Date Range.
<!-- Query element for states to collect claim responses they are expecting -
->
<xs:element name=" REDACTED
type REDACTED />

<!-- Types for query element for states to collect claim responses they
are expecting —-->

SIDESVs. 55

<xs:complexType name="StateSeparationResponseCollectionQueryType'™>
<xs:sequence>
<xs:element name="StatePostalCode" type="StateAbrCodes" />
<xs:element name="StateSeparationResponseCollectionQueryCriteria
type="StateSeparationResponseCollectionQueryCriteriaType"
minOccurs="0" />
</xs:sequence>
<xs:attribute ref="wsu:Id" use="optional"/>
</xs:complexType>

<xs:complexType
name="StateSeparationResponseCollectionQueryCriteriaType'™>
<xs:sequence>
<xs:element name="StateSOAPTransactionNumber"
type="xs:nonNegativelInteger" minOccurs="0"/>
<xS:group
ref="StateSeparationResponseCollectionQueryCriteriaGroup" minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xs:group name="StateSeparationResponseCollectionQueryCriteriaGroup'">
<xs:sequence>
<xs:element name="BrokerRecordEffectiveDateFrom"
type="CustomDateTime" />
<xs:element name="BrokerRecordEffectiveDateTo"
type="CustomDateTime" />
</xs:sequence>

</xs:group>

For the straight Pull, the caller needs to supply only the state Unique ID. Although there are
different ways to verify the calling state besides this element, the Broker uses it as an additional
security check. Also, there is a requirement in the WSDL 1.1 specification that a WSDL
definition have at least one input attribute.

<?xml version="1.0" encoding="US-ASCII"?>

<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas SeparationResponse.xsd ">
<StatePostalCode>ST</StatePostalCode>
</StateSeparationResponseCollectionQuery>

For the Re-Pull by StateSOAPTransactionNumber, the caller needs to supply the state Unique ID
and the StateSOAPTransactionNumber element out of the
StateSeparationResponseCollectionQueryCriteriaType. This will allow the Broker to send the
file defined by the StateSOAPTransactionNumber.

<?xml version="1.0" encoding="US-ASCII"?>

<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemaLocation="https:// REDACTED /schemas combined.xsd ">
<StatePostalCode>ST</StatePostalCode>

SIDESY.

<StateSeparationResponseCollectionQueryCriteria>
<StateSOAPTransactionNumber>123456221</StateSOAPTransactionNumber>
</StateSeparationResponseCollectionQueryCriteria>

</StateSeparationResponseCollectionQuery>

WARNING: If the end date
For the Re-Pull by date range, the caller needs to supply the state Unique in the Re-Pull by date range
ID and the StateSeparationResponseCollectionQueryCriteriaGroup element | is in the future, this will

out of the StateSeparationResponseCollectionQueryCriteriaType The Re- | cause the Central Broker to

Pull by date range will pull all the files that were pulled by the connector resend all transactions
including all the resent

transactions that the Central
Broker has been delivering
due to this call, thus putting
your Connector into an

’ infinite loop until that date is
StateSOAPTransactionNumber. reached. This will tax the

Connector and the Central

during the date range specified.

The StateSeparationResponseCollectionQueryCriteriaGroup is a complex
type that is defined as a begin date (BrokerRecordEffectiveDateFrom), an
end date (BrokerRecordEffectiveDateTo) and a

The first time this operation is called, the StateSOAPTransactionNumber Broker needlessly and must
must not be included and the date range that the files to be Re-Pulled are be avoided.
included.

When the Broker sends back the first file in this date range, it will include in the SOAP header
the next StateSOAPTransactionNumber that it sent during that date range (in element name
NextStateSOAPTransactionNumber). In the next call to this operation, the caller must include
the NextStateSOAPTransactionNumber as the StateSOAPTransactionNumber along with the
date range. This differentiates to the Broker the next call in the series from a brand new Re-Pull
by Date request.

When the Central Broker determines that it has no more files to send back to the connector in
the given date range, the last file sent back to the connector is indicated by the Central Broker
not including the next StateSOAPTransactionNumber (so there will not be a
NextStateSOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="US-ASCII"?>
<!-- test query to re-pull by date range, pulls up to 8mb of records -->
<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="https:// REDACTED /schemas combined.xsd ">
<StatePostalCode>ST</StatePostalCode>
<StateSeparationResponseCollectionQueryCriteria>
<BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</StateSeparationResponseCollectionQueryCriteria>
</StateSeparationResponseCollectionQuery>

SIDESY.

57

Subsequent Calls:

<?xml version="1.0" encoding="US-ASCII'"?>
<!-- test query to re-pull by date range, pulls up to 8mb of records -->
<StateSeparationResponseCollectionQuery xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https:// REDACTED /schemas combined.xsd ">
<StatePostalCode>ST</StatePostalCode>
<StateSeparationResponseCollectionQueryCriteria>
<StateSOAPTransactionNumber>12345678901234567890123456789012</StateSOAP
TransactionNumber>
<BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</StateSeparationResponseCollectionQueryCriteria>
</StateSeparationResponseCollectionQuery>

4.4.1.2.1.2 Central Broker Response to the State

When the Broker receives a “Pull” request from a State, it begins assembling all the responses
that are intended for that state. It constructs a SOAP message according to the rules for a
Separation Information SOAP message (less than 8MB, one employer or TPA per message, etc.).
It adds the additional field BrokerRecordEffectiveDate to the response, which indicates the date
that it was accepted into the Broker. It then sends the responses in the HTTP response.

<StateSeparationRespons ollection xmlns="https:// REDACTED /schemas">
<StateSeparationRe nse>
<StateRequestRecordGUID>00000000000000000000000000099100</StateReques
tRecordGUID>
<BrokerRecordTransactionNumber>2001636</BrokerRecordTransactionNumber

>
<SSN>000000546</55N>
<ClaimEffectiveDate>2008-11-16</ClaimEffectiveDate>
<ClaimNumber>0</ClaimNumber>
<StateEmployerAccountNbr>480616009</StateEmployerAccountNbr>
<ClaimantJobTitle>Test Job Title 47</ClaimantJobTitle>
<SeasonalEmploymentInd>N</SeasonalEmploymentInd>
<EmployerReportedClaimantFirstDayofWork>2004-05-

17</EmployerReportedClaimantFirstDayofWork>
<EmployerReportedClaimantLastDayofWork>2008-11-

1l4</EmployerReportedClaimantLastDayofWork>
<AverageWeeklyWage>1575.33</AverageWeeklyWage>
<EmployerSepReasonCode>1</EmployerSepReasonCode>
<ReturnToWorkInd>Y</ReturnToWorkInd>
<ReturnToWorkDate>2009-02-01</ReturnToWorkDate>
<Remuneration>

<RemunerationTypeCode>1</RemunerationTypeCode>
<RemunerationAmountPerPeriod>393.83</RemunerationAmountPerPeriod>
<RemunerationPeriodFrequencyCode>W</RemunerationPeriodFrequencyCo

2

Z
7

SIDE

< >2008-11-14< >
< >Y< >
< >2008-11-14< >
< >2008-12-14< >
< >
< >40<
>
< >Test Sep Reason Comments
Codel< >
< >
< >1< >
< >1< >
< >test type of document< >
< >2< >
< >UjBsRO9EbGhjZ0dTQUxXNQUFBUUNBRU1tQ1p0dUlGUXhEUzhi<
>
< >
< >T< >
< >ADP< >
< >4445557777<
>
< >Preparer ADP Name Maximum Character Testing
Sixty Characte< >
< >Preparer ADP Title Max Charact< >
< >4445557788< >
< >adppreparer@test.com< >
< >2009-07-22T01:39:20.000-
04:00< >
< >
< >

4.4.1.2.1.3 State Acknowledgement to the Central Broker

The StateSeparationResponseCollectionAcknowledgement is initiated once the state has received
its file from the Broker. The acknowledgement must accompany every state Pull request, as this
is the manner in which the Broker knows that the state Pull was successful. This is required even
if the Broker has sent back an empty file and a MessageCode of 2. If this is not sent back to the
Broker, the next “Pull” call to the Broker will result in the same file being passed back. The
Broker will not move on to the next file until it receives a successful acknowledgement. If the
Broker receives 3 unanswered Pull requests, it will suspend any processing of Pull requests by
the State until the Broker Administrator and State Administrator can work out the problem.

The key field in this message is the StateSOAPTransmissionNumber, which must correspond
with the StateSOAPTransmissionNumber sent back in the Broker Response. The remainder of
the message is just reporting information; the values are not used for anything at this time. If the
state does not collect this information, just return O for the number of records and place a valid
date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>

SIDESY

59

<StateSeparationResponseCollectionAcknowledgement xmlns="https:// REDACTED
/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas combined.xsd ">

<StateSOAPTransmissionNumber>12345678901234567890123456789012</StateSOAPTrans
missionNumber>
<NumberOfResponseRecordsReceived>0</NumberOfResponseRecordsReceived>
<NumberOfResponseRecordsInError>0</NumberOfResponseRecordsInError>
<DateStartedReceivingTransmission>2008-12-31T12:00:00.000-
04:00</DateStartedReceivingTransmission>
<DateFinishedReceivingTransmission>2008-12-31T12:00:00.000-
04:00</DateFinishedReceivingTransmission>
</StateSeparationResponseCollectionAcknowledgement>

4.4.1.2.2 Employer/TPA Pull
4.41.2.2.1 Pull from Central Broker

The EmployerTPASeparationRequestCollectionQuery is a complex query type that allows the
caller to specify one of three operations: a Pull, a Re-Pull by
EmployerTPASOAPTransactionNumber, and a Re-Pull by a Date Range.

<!-- Query element for employer to collect claim responses they are
expecting -->
<xs:element name=" REDACTED
type="REDACTED />

<!-- Types for query element for Employers/TPAs to collect claim requests
they are expecting -->
<xs:complexType name="EmployerTPASeparationRequestCollectionQueryType'>
<xs:sequence>
<xs:element name="UniqueID" type="UniqueIDType" />
<xs:element
name="EmployerTPASeparationRequestCollectionQueryCriteria”

type="EmployerTPASeparationRequestCollectionQueryCriteriaType"
minOccurs="0" />
</xs:sequence>
<xs:attribute ref="wsu:Id" use="optional"/>
</xs:complexType>

<xs:complexType
name="EmployerTPASeparationRequestCollectionQueryCriterialype'">
<xs:sequence>
<xs:element name="EmployerTPASOAPTransactionNumber"
type="xs:nonNegativelnteger" minOccurs="0" />
<xS:group
ref="EmployerTPASeparationRequestCollectionQueryCriteriaGroup"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>

)

SIDES

<z

#

60

<xXs:group
name="EmployerTPASeparationRequestCollectionQueryCriteriaGroup'>
<xs:sequence>
<xs:element name="BrokerRecordEffectiveDateFrom"
type="CustomDateTime" />
<xs:element name="BrokerRecordEffectiveDateTo"
type="CustomDateTime" />
</xs:sequence>

</xs:group>

For the straight Pull, the caller needs to supply only the employer or TPA Unique ID. Although
there are different ways to verify the calling employer or TPA besides this element, the Broker
uses it as an additional security check. Also, there is a requirement in WSDL 1.1 that a WSDL

definition have at least one input attribute.

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas combined.xsd ">

<UniqueID>BR0O00000001</UniquelID>
</EmployerTPASeparationRequestCollectionQuery>

For the Re-Pull by EmployerTPASOAPTransactionNumber, the caller needs to supply the
Employer/TPA Unique ID and the EmployerTPASOAPTransactionNumber element out of the
EmployerTPASeparationResponseCollectionQueryCriteriaType. This will allow the Broker to

send the file defined by the EmployerTPASOAPTransactionNumber.

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED

/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas combined.xsd ">

<UniqueID>BR0O00000001</UniquelID>
<EmployerTPASeparationRequestCollectionQueryCriteria>

<EmployerTPASOAPTransactionNumber>26151</EmployerTPASOAPTransactionNumb

er>
</EmployerTPASeparationRequestCollectionQueryCriteria>
</EmployerTPASeparationRequestCollectionQuery>

For the Re-Pull by date range, the caller needs to supply the EmployerTPA Unique ID and the

EmployerTPASeparationResponseCollectionQueryCriteriaGroup element

out of the EmployerTPASeparationResponseCollectionQueryCriteriaType.

The Re-Pull by date range will pull all the files that were pulled by the
connector during the date range specified.

The EmployerTPASeparationResponseCollectionQueryCriteriaGroup is a
complex query type that is defined as a begin date
(BrokerRecordEffectiveDateFrom), an end date

SIDESY.

WARNING: If the end date
in the Re-Pull by date range
is in the future, this will
cause the Central Broker to
resend all transactions
including all the resent
transactions that the Central
Broker has been delivering
due to this call, thus putting
your Connector into an
infinite loop until that date is
reached. This will tax the
Connector and the Central
Broker needlessly and must
be avoided.

(BrokerRecordEffectiveDateTo) and an EmployerTPASOAPTransactionNumber.

The first time this operation is called, the EmployerTPASOAPTransactionNumber must not be
included and the date range that the files to be Re-Pulled are included.

When the Broker sends back the first file in this date range, it will include in the SOAP header
the next EmployerTPASOAPTransactionNumber that it sent during that date range (in element
name NextEmployerTPASOAPTransactionNumber). In the next call to this operation, the caller
must include the NextEmployerTPASOAPTransactionNumber as the
EmployerTPASOAPTransactionNumber along with the date range. This differentiates to the
Broker the next call in the series from a brand new Re-Pull by Date request.

When the Central Broker determines that it has no more files to send back to the connector in
the given date range, the last file sent back to the connector is indicated by the Central Broker
not including the next EmployerTPASOAPTransactionNumber (so there will not be a
NextEmployerTPASOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED
/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="https:// REDACTED /schemas combined.xsd ">
<UniqueID>BR000000001</UniquelID>
<EmployerTPASeparationRequestCollectionQueryCriteria>
<BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</EmployerTPASeparationRequestCollectionQueryCriteria>
</EmployerTPASeparationRequestCollectionQuery>

Subsequent Calls:

<?xml version="1.0" encoding="UTF-8"?>

<EmployerTPASeparationRequestCollectionQuery xmlns="https:// REDACTED
/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="https:// REDACTED /schemas combined.xsd ">
<UniqueID>BR0O00000001</UniquelID>
<EmployerTPASeparationRequestCollectionQueryCriteria>
<EmployerTPASOAPTransactionNumber>12345678901234567890123456789012</Emp
loyerTPASOAPTransactionNumber>
<BrokerRecordEffectiveDateFrom>2009-01-01T12:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2009-12-31T12:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</EmployerTPASeparationRequestCollectionQueryCriteria>
</EmployerTPASeparationRequestCollectionQuery>

SIDESY.

62

4.4.1.2.2.2 Central Broker Response to Employer/TPA

When the Broker receives a “Pull” request from an Employer/TPA, it begins assembling all the
requests that are intended for that employer or TPA. It constructs a SOAP message according to
the rules for a Separation Information SOAP message (less than 8MB, one employer or TPA per
message, etc.). It adds two additional fields to the Separation Request - the
BrokerRecordEffectiveDate and the BrokerRecordTransactionNumber. The
BrokerRecordEffectiveDate indicates the date that it was accepted into the Broker. The
BrokerRecordTransactionNumber is a unique record tracking number and must be returned on
the response for this record. It then sends the separation requests in the HTTP response.

< xmlns="https:// REDACTED /schemas">
< >
>00000000000000000000000000099960<

A

>

< >000000618< >
< >2008-11-23< >
< >1< >
< >555444333< >
< >JC Penney< >
< >123456789< >
< >4< >
< >1< >
< >2008-11-23< >
< >CO< >
< >Sixhundredeighteen< >
< >William< >
< >R< >
< >Test Job Title 618< >
< >2006-11-
17< >
< >2008-11-
21< >
< >NA< >
< >18< >
< >2008-11-23< >
< >2008-12-08< >
< >2001569<
>
< >2009-07-13T14:35:58.000-
04:00< >
< >
< >

4.4.1.2.2.3 Employer/TPA Acknowledgement to Central Broker

The EmployerTPASeparationRequestCollectionAcknowledgement is initiated once the employer
or TPA has received its file from the Broker. The acknowledgement must accompany every
employer or TPA Pull request, as this is the manner in which the Broker knows that the
Employer/TPA Pull was successful. This is required even if the Broker has sent back an empty
file and a MessageCode of 2. If this is not sent back to the Broker, the next “Pull” call to the
Broker will result in the same file being passed back. The Broker will not move on to the next

SIDESY

63

file until it receives a successful acknowledgement. If the Broker receives 3 unanswered Pull
requests, it will suspend any processing of Pull requests by the Employer/TPA until the Broker
Administrator and Employer/TPA Administrator can work out the problem.

The key field in this message is the EmployerTPASOAPTransmissionNumber, which must
correspond with the EmployerTPASOAPTransmissionNumber sent back in the Broker
Response. The remainder of the message is just reporting information; the values are not used
for anything at this time. If the EmployerTPA does not collect this information, just return 0 for
the number of records and place a valid date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>
<EmployerTPASeparationRequestCollectionAcknowledgement xmlns="https://
REDACTED /schemas™ xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas combined.xsd ">
<EmployerTPASOAPTransmissionNumber>3211</EmployerTPASOAPTransmissionNumber>
<NumberOfRequestRecordsReceived>4</NumberOfRequestRecordsReceived>
<NumberOfRequestRecordsInError>0</NumberOfRequestRecordsInError>
<DateStartedReceivingTransmission>2001-12-31T12:00:00.000-
04:00</DateStartedReceivingTransmission>
<DateFinishedReceivingTransmission>2001-12-31T12:00:00.000-
04:.00</DateFinishedReceivingTransmission>
</EmployerTPASeparationRequestCollectionAcknowledgement>

4.4.2 Earnings Verification
4.4.2.1 Post Payload

A “Post” is defined (see Section 4.1.1) as sending a request or response to the Broker by a
particular connector. This section discusses the (pre-encryption) payloads in the SOAP message
for the Earnings Verification Exchange.

4.4.2.1.1 State Post Payload
4.4.2.1.1.1 Post to Central Broker Payload

The “Post” payload in the SOAP message is the data defined in the
StateEarningsVerificationRequestCollection defined in the Earnings Verification Request xsd.

<?xml version="1.0"?>
<StateEarningsVerificationRequestCollection xsi:schemalocation="https://

REDACTED /schemas EarningsVerificationRequest.xsd" xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<StateEarningsVerificationRequest>

<StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000

00003</StateEarningsVerificationRequestRecordGUID>
<RequestingStateAbbreviation>ST</RequestingStateAbbreviation>
<UIOfficeName>0ffice Name</UIOfficeName>
<UIOfficePhone>5555555555</UI0fficePhone>
<UIOfficeFax>5555555554</UI0fficeFax>

SIDESY.

64

<UIOfficeEmailAddress>james.madison@state.gov</UIOfficeEmailAddress>
<StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>
<FEIN>123456789</FEIN>
<EmployerName>ACME</EmployerName>
<SSN>311111334</SSN>
<ClaimantLastName>Lastname</ClaimantLastName>
<ClaimantFirstName>Firstname</ClaimantFirstName>
<ClaimantMiddleInitial>M</ClaimantMiddlelInitial>
<ClaimantSuffix>JR</ClaimantSuffix>
<NumberofWeeksRequested>5</NumberofWeeksRequested>
<EarningsVerificationWeekBeginDate>2010-08-
0l</EarningsVerificationWeekBeginDate>
<EarningsVerificationWeekEndDate>2010-09-
04</EarningsVerificationWeekEndDate>
<EarningsVerificationComments>This is a comment field for this Earnings
Verification Request</EarningsVerificationComments>
<RequestDate>2010-10-14</RequestDate>
<EarningsStatusCode>3</EarningsStatusCode>
<TipsStatusCode>1</TipsStatusCode>
<CommissionStatusCode>1</CommissionStatusCode>
<BonusStatusCode>1</BonusStatusCode>
<VacationStatusCode>1</VacationStatusCode>
<SickLeaveStatusCode>1</SickLeaveStatusCode>
<HolidayStatusCode>3</HolidayStatusCode>
<SeveranceStatusCode>3</SeveranceStatusCode>
<WagesInLieuStatusCode>4</WagesInLieuStatusCode>
<BarningsVerificationResponseCommentIndicator>1</EarningsVerificationRe
sponseCommentIndicator>
<ResponseDueDate>2010-10-28</ResponseDueDate>
<EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>
</StateEarningsVerificationRequest>

</StateEarningsVerificationRequestCollection>

4.4.2.1.1.2 Central Broker Acknowledgement to State Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the
number of requests it received, the number in error, and the dates that it started receiving the
records and finished receiving the records. This verifies to the state that the Broker received the
desired file so it can move on to the next file.

<StateEarningsVerificationRequestCollectionAcknowledgement xmlns="https://

REDACTED /schemas">
<StateRequestFileGUID>COEBIC5D24CA4BBEFBSAEEDI7AS252C8</StateRequestiiles
UlLb>
<NumberOfRequestRecordsReceived>1</NumberOfRequestRecordsReceived>
<NumberOfRequestRecordsInError>0</NumberOfRequestRecordsInError>
<DateStartedReceivingTransmission>2010-11-18T10:26:52.730-
05:00</DateStartedReceivingTransmission>
<DateFinishedReceivingTransmission>2010-11-18T10:26:54.610-
05:00</DateFinishedReceivingTransmission>
</StateEarningsVerificationRequestCollectionAcknowledgement>

SIDESY.

65

Note: The Broker also sends back custom SOAP header information that
tells the overall status of the message. This is defined in Section 4.3-
SOAP Custom Headers.

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the
Broker will also return to the state all of the information that it can on why each individual
request failed. The FailedEarningVerificationRequest element defined in the earnings
verification request XSD will present the Error Code and the Error Message of the error it found,
as described in Part B, Section C-2.8.

< >
< >3110100000000000000000000
0000001< >
< >
< >311< >
< >Business Rule violation - The
NumberofWeeksRequested (Character - Size 2) must equal the number of days
included in EarningsVerificationWeekBeginDate thru
EarningsVerificationWeekEndDate divided by 7 days.< >
< >
< >

Putting this together with the successful acknowledgement:

< xmlns="https://
REDACTED /schemas">
< >9CEBA17833DFD7C6476EEDE25D20FFF6<
>
< >
< >3110100000000000000000000
0000001< >
< >
< >311< >
< >Business Rule violation - The
NumberofWeeksRequested (Character - Size 2) must equal the number of days
included in EarningsVerificationWeekBeginDate thru
EarningsVerificationWeekEndDate divided by 7 days.< >
< >
< >
< >1< >
< >1< >
< >2011-01-21T10:49:27.929-
05:00< >
< >2011-01-21T710:49:28.181~-
05:00< >
< >

4.4.2.1.2 Employer/TPA Post Payload

4.4.2.1.2.1 Post to Central Broker Payload

SIDESY.

66

The “Post” payload in the SOAP message is the data defined in the
EmployerTPAEarningsVerificationResponseCollection defined in the Earnings Verification
Response xsd.

<?xml version="1.0"?>
<EmployerTPAEarningsVerificationResponseCollection

xsi:schemalocation="https:// REDACTED /schemas

EarningsVerificationResponse.xsd" xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<EmployerTPAEarningsVerificationResponse>
<!-- Backfilled -->
<StateEarningsVerificationRequestRecordGUID>AAA530000000000000000000000
00003</StateEarningsVerificationRequestRecordGUID>

<!-- Backfilled -->
<BrokerRecordTransactionNumber>5447</BrokerRecordTransactionNumber>
<!-- Backfilled -->
<RequestingStateAbbreviation>ST</RequestingStateAbbreviation>

<!-- Backfilled -->

<UIOfficeName>Office Name</UIOfficeName>

<!-- Backfilled -->
<StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>

<!-- Backfilled -->

<FEIN>123456789</FEIN>

<CorrectedFEIN>987654321</CorrectedFEIN>

<!-- Backfilled -->

<EmployerName>ACME</EmployerName>

<CorrectedEmployerName>Fly By Night</CorrectedEmployerName>

<!-- Backfilled -->

<SSN>311111334</SSN>

<ClaimantNameWorkedAsForEmployer>John Q
Public</ClaimantNameWorkedAsForEmployer>

<!-- Backfilled -->
<NumberofWeeksRequested>5</NumberofWWeeksRequested>
<!-- Backfilled -->

<EarningsVerificationWeekBeginDate>2010-08-
01</EarningsVerificationWeekBeginDate>

<!-- Backfilled -->

<EarningsVerificationWeekEndDate>2010-09-
04</EarningsVerificationWeekEndDate>

<!-- 1 - Claimaint works, 20 - Never Employed Here, 21 - TPA does not
represent Employer -->

<ClaimantEmployerWorkRelationshipCode>1</ClaimantEmployerWorkRelationsh
ipCode>

<!-- 1 Yes, has earnings, 2 - did not have earnings (100% Sales), 9 -
No Work —-->

<EmployerEarningsCode>1</EmployerEarningsCode>

<FirstDayWorkedinPeriod>2010-08-01</FirstDayWorkedinPeriod>

<!-- 1 for Yes, 2 for No -->

<StillWorkingCode>2</StillWorkingCode>

<LastDayWorked>2010-09-04</LastDayWorked>

<!-- 1 - Layoff, 2 - Fired, 3 - Vol Quit, 4 - Other -->

<EmployerSepReasonCode>1</EmployerSepReasonCode>

<!=- When Request = 1 or (2 with Work/Relationship = 20/21 or Earnings
Code = 9) -—>

SIDESN

<EarningsVerificationResponseComment>This employee was let go during
the time period</EarningsVerificationResponseComment>

<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-01</WeekBeginDate>
<WeekEndDate>2010-08-07</WeekEndDate>
<HoursWorked>15:00</HoursWorked>
<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
<EarningsPaidDate>2010-08-21</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-07</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceRAmountPaidForWeek>
<SeverancePaidDate>2010-08-07</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-08-07</WagesInLieuPaidDate>

</WeeklyEarningsVerification>

<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-08</WeekBeginDate>
<WeekEndDate>2010-08-14</WeekEndDate>
<HoursWorked>15:00</HoursWorked>
<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
<EBEarningsPaidDate>2010-08-21</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-14</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>
<SeverancePaidDate>2010-08-14</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-08-14</WagesInLieuPaidDate>

</WeeklyEarningsVerification>

<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-15</WeekBeginDate>
<WeekEndDate>2010-08-21</WeekEndDate>
<HoursWorked>15:00</HoursWorked>
<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
<EarningsPaidDate>2010-08-21</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-21</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>
<SeverancePaidDate>2010-08-21</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-08-21</WagesInLieuPaidDate>

</WeeklyEarningsVerification>

<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-22</WeekBeginDate>
<WeekEndDate>2010-08-28</WeekEndDate>
<HoursWorked>101:00</HoursWorked>
<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWWeek>
<EarningsPaidDate>2010-08-28</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-08-28</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>
<SeverancePaidDate>2010-08-28</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInLieuAmountPaidForWeek>

SIDESY.

<WagesInLieuPaidDate>2010-08-28</WagesInLieuPaidDate>
</WeeklyEarningsVerification>
<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-29</WeekBeginDate>
<WeekEndDate>2010-09-04</WeekEndDate>
<HoursWorked>5:00</HoursWorked>
<!-- See Request values for required or not for all below -->
<AmountEarnedForWeek>500.00</AmountEarnedForWWeek>
<EarningsPaidDate>2010-09-04</EarningsPaidDate>
<HolidayAmountPaidForWeek>60.00</HolidayAmountPaidForWeek>
<HolidayPaidDate>2010-09-04</HolidayPaidDate>
<SeveranceAmountPaidForWeek>70.00</SeveranceAmountPaidForWeek>
<SeverancePaidDate>2010-09-04</SeverancePaidDate>
<WagesInLieuAmountPaidForWeek>80.00</WagesInlLieuAmountPaidForWeek>
<WagesInLieuPaidDate>2010-09-04</WagesInLieuPaidDate>
</WeeklyEarningsVerification>
<!-- E - Employer, T - TPA -->
<PreparerTypeCode>T</PreparerTypeCode>
<PreparerCompanyName>ABC TPA</PreparerCompanyName>
<PreparerTelephoneNumberPlusExt>5555555556</PreparerTelephoneNumberPlus
Ext>
<PreparerContactName>Mrs Sue Herman</PreparerContactName>
<PreparerTitle>Claims Administrator</PreparerTitle>
<PreparerFaxNbr>5555555557</PreparerFaxNbr>
<PreparerEmailAddress>sue.herman@abctpa.com</PreparerkEmailAddress>
<!-- Backfilled -->
<EarningsVerificationSourceCode>9</EarningsVerificationSourceCode>
</EmployerTPAEarningsVerificationResponse>
</EmployerTPAEarningsVerificationResponseCollection>

4.4.2.1.2.2 Central Broker Acknowledgement to Employer/TPA Payload

In the acknowledgement to the state Post, the Broker sends back a response that contains the
number of responses it received, the number in error, and the dates that it started receiving the
records and finished receiving the records. This verifies to the employer or TPA that the Broker
received the desired file so it can move on to the next file.

<EmployerTPAEarningsVerificationResponseCollectionAcknowledgement
xmlns="https:// REDACTED /schemas">
<EmployerTPAResponseli1eGUID>399D60FDB970C10C3619DCOB378ABF77</EmployerTP
AResponseFileGUID>
<NumberOfResponseRecordsReceived>1</NumberOfResponseRecordsReceived>
<NumberOfResponseRecordsInError>0</NumberOfResponseRecordsInError>
<DateStartedReceivingTransmission>2011-01-21T11:39:45.842-
05:00</DateStartedReceivingTransmission>
<DateFinishedReceivingTransmission>2011-01-21T711:39:46.310-
05:00</DateFinishedReceivingTransmission>
</EmployerTPAEarningsVerificationResponseCollectionAcknowledgement>

Note: The Broker also sends back custom SOAP header information that
tells the overall status of the message. This is defined in Section 4.3- SOAP
Custom Headers.

SIDES

2

#

69

If the Broker determines there were Business Rule or XSD errors in the “Post” message, the
Broker will also return to the employer or TPA all of the information that it can on why each
individual response failed. The FailedEarningsVerificationResponse element defined in the
earnings verification response XSD will present the Error Code and the Error Message of the
error it found, as described in Part B, Section C-2.8.

< >
< >4520000000000000000000000
0000001< >
< >6591< >
< >
< >452< >
< >Business Rule violation - There must be a value
(Numeric - 7.2) for SeveranceAmountPaidForWeek in Repeatable Weekly Earnings
Verification 1 if SeveranceStatusCode (from Request) = 2 for Field Required,
Date Not Required or 3 for Field Required, Date Required, Date Paid or 4 for
Field Required, Date Required, Date Allocated< >
< >
< >

Putting this together with the successful acknowledgement:

<
xmlns="https:// REDACTED /schemas">
< >CD685018CC4E55949E425F86B83E4687<
>
< >
< >4520000000000000000000000
0000001< >
< >6591< >
< >
< >452< >
< >Business Rule violation - There must be a value
(Numeric - 7.2) for SeveranceAmountPaidForWeek in Repeatable Weekly Earnings
Verification 1 if SeveranceStatusCode (from Request) = 2 for Field Required,
Date Not Required or 3 for Field Required, Date Required, Date Paid or 4 for
Field Required, Date Required, Date Allocated< >
< >
< >
< >1< >
< >1< >
< >2010-12-14T08:18:59.076~-
05:00< >
< >2010-12-14T08:19:07.776~-
05:00< >
< >

4.4.2.2 Pull Payload

A “Pull” is defined (see Section 4.1.2) as sending a query to the Central Broker to allow the
Central Broker to send the connector all of the requests or responses it has waiting for it (in
multiple transactions if they are from different endpoints). This section discusses the (pre-
encryption) payloads in the SOAP message.

SIDESY.

4.4.2.2.1 State Pull Payload
4.4.2.2.1.1 Pull from Central Broker

The StateEarningsVerificationResponseCollectionQuery defined in the State Earnings
Verification Pull WSDL (see Section 4.6) is a complex type that allows the caller to specify one
of three operations: a Pull, a Re-Pull by StateSOAPTransactionNumber, and a Re-Pull by a Date
Range.

<!-- Query element for states to collect claim responses they are expecting
-=>
<xs:element name="StateEarningsVerificationResponseCollectionQuery"
type="StateEarningsVerificationResponseCollectionQueryType'/>

<!-- Types for query element for states to collect claim responses they
are expecting -->
<xs:complexType
name="StateEarningsVerificationResponseCollectionQueryType">
<xs:sequence>
<xs:element name="StatePostalCode" type="StateAbrCodes" />
<xs:element
name="StateEarningsVerificationResponseCollectionQueryCriteria

type="StateEarningsVerificationResponseCollectionQueryCriteriaTlype"
minOccurs="0" />
</xs:sequence>
</xs:complexType>

<xs:complexType
name="StateEarningsVerificationResponseCollectionQueryCriteriaType'>
<xs:sequence>
<xs:element name="StateSOAPTransactionNumber"
type="xs:nonNegativelnteger" minOccurs="0"/>
<Xs:group
ref="StateEarningsVerificationResponseCollectionQueryCriteriaGroup"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xS:group
name="StateEarningsVerificationResponseCollectionQueryCriteriaGroup">
<xs:sequence>
<xs:element name="BrokerRecordEffectiveDateFrom"
type="CustomDateTime" />
<xs:element name="BrokerRecordEffectiveDateTo"
type="CustomDateTime" />
</xs:sequence>

</xs:group>
For the straight Pull, the caller needs to supply only the state Unique ID. Although there are
different ways to verify the calling state besides this element, the Broker uses it as an additional

security check. Also, there is a requirement in the WSDL 1.1 specification that a WSDL
definition have at least one input attribute.

SIDESY.

<?xml version="1.0" encoding="US-ASCII"?>

<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED
/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas REDACTED ">
<StatePostalCode>ST</StatePostalCode>

</StateEarningsVerificationResponseCollectionQuery>

For the Re-Pull by StateSSOAPTransactionNumber, the caller needs to supply the state Unique ID
and the StateSOAPTransactionNumber element out of the
StateEarningsVerificationResponseCollectionQueryCriteriaType for Earnings Verification. This
will allow the Broker to send the file defined by the StateSOAPTransactionNumber.

<?xml version="1.0" encoding="US-ASCII"?>

<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED
/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

xsi:schemalLocation="https:// REDACTED /schemas REDACTED ">
<StatePostalCode>ST</StatePostalCode>
<StateEarningVerificationResponseCollectionQueryCriteria>
<StateSOAPTransactionNumber>42153</StateSOAPTransactionNumber>
</StateEarningsVerificationResponseCollectionQueryCriteria>

</StateEarningsVerificationResponseCollectionQuery>

For the Re-Pull by date range, the caller needs to supply the state Unique

WARNING: If the end date
in the Re-Pull by date range
ID and the is in the future, this will

StateEarningsVerificationResponseCollectionQueryCriteriaGroup element | cause the Central Broker to

out of the StateEarningsVerificationResponseCollectionQueryCriteriaType | resend all transactions
for Earnings Verification. The Re-Pull by date range will pull all the files including all the resent

that were pulled by the connector during the date range specified. transactions that the Central

Broker has been delivering
The StateEarningsVerificationResponseCollectionQueryCriteriaGroup isa | due to this call, thus putting

complex type that is defined as a begin date your Connector intoan
(BrokerRecordEffectiveDateFrom), an end date infinite loop until that date is
(BrokerRecordEffectiveDateTo) and a StateSOAPTransactionNumber. reached. This will tax the

The first time this operation is called, the StateSOAPTransactionNumber

must not be included and the date range that the files to be Re-Pulled are B ARLEL

Connector and the Central
Broker needlessly and must

included.

When the Broker sends back the first file in this date range, it will include in the SOAP header
the next StateSOAPTransactionNumber that it sent during that date range (in element name
NextStateSOAPTransactionNumber). In the next call to this operation, the caller must include
the NextStateSOAPTransactionNumber as the StateSOAPTransactionNumber along with the
date range. This differentiates to the Broker the next call in the series from a brand new Re-Pull
by Date request.

When the Central Broker determines that it has no more files to send back to the connector in
the given date range, the last file sent back to the connector is indicated by the Central Broker

SIDESY.

72

not including the next StateSOAPTransactionNumber (so there will not be a
NextStateSOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="US-ASCII"?>
<!-- test query to re-pull by date range, pulls up to 8mb of records -->
<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED
/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemaLocation="https:// REDACTED /schemas REDACTED >
<StatePostalCode>ST</StatePostalCode>
<StateEarningsVerificationResponseCollectionQueryCriteria>
<BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2009-12-31T00:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</StateEarningsVerificationResponseCollectionQueryCriteria>

</StateEarningsVerificationResponseCollectionQuery>

Subsequent Calls:

<?xml version="1.0" encoding="US-ASCII"?>
<StateEarningsVerificationResponseCollectionQuery xmlns="https:// REDACTED
/schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalLocation="https:// REDACTED /schemas REDACTED ">
<StatePostalCode>ST</StatePostalCode>
<StateEarningsVerificationResponseCollectionQueryCriteria>
<StateSOAPTransactionNumber>12345678901234567890123456789012<StateSOAP
TransactionNumber>
<BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2009-12-31T00:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</StateEarningsVerificationResponseCollectionQueryCriteria>
</StateEarningsVerificationResponseCollectionQuery>

4.4.2.2.1.2 Central Broker Response to the State

When the Broker receives a “Pull” request from a State, it begins assembling all the responses
that are intended for that state. It constructs a SOAP message according to the rules for a SOAP
message (less than 8MB, one employer or TPA per message, etc.). It adds the additional field
BrokerRecordEffectiveDate to the response, which indicates the date that it was accepted into the
Broker. It then sends the responses in the HTTP response.

<StateFarningsVerificationResponseCollection xmlns="https:// REDACTED
/schemas">
<StateEarningsVerificationResponse>

<StateBarningsVerificationRequestRecordGUID>AAAS5100000000000000000000

SIDESY.

0000001</StateEarningsVerificationRequestRecordGUID>
<BrokerRecordTransactionNumber>5461</BrokerRecordTransactionNumber>
<RequestingStateAbbreviation>ST</RequestingStateAbbreviation>
<UTOfficeName>0ffice Name</UIOfficeName>
<StateEmployerAccountNbr>1234567890</StateEmployerAccountNbr>
<FEIN>123456789</FEIN>
<CorrectedFEIN>987654321</CorrectedFEIN>
<EmployerName>ACME</EmployerName>
<CorrectedEmployerName>Fly By Night</CorrectedEmployerName>
<SSN>211111111</SSN>
<ClaimantNameWorkedAsForEmployer>John Q
Public</ClaimantNameWorkedAsForEmployer>
<NumberofWeeksRequested>5</NumberofWWeeksRequested>
<EarningsVerificationWeekBeginDate>2010-08-
0l</EarningsVerificationWeekBeginDate>
<EarningsVerificationWeekEndDate>2010-09-
04</EarningsVerificationWeekEndDate>
<ClaimantEmployerWorkRelationshipCode>1</ClaimantEmployerWorkRelation
shipCode>
<EmployerEarningsCode>1</EmployerEarningsCode>
<FirstDayWorkedinPeriod>2010-08-01</FirstDayWorkedinPeriod>
<StillWorkingCode>2</StillWorkingCode>
<LastDayWorked>2010-09-04</LastDayWorked>
<EmployerSepReasonCode>1</EmployerSepReasonCode>
<BarningsVerificationResponseComment>This employee was let go during
the time period</EarningsVerificationResponseComment>
<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-01</WeekBeginDate>
<WeekEndDate>2010-08-07</WeekEndDate>
<HoursWorked>15:00</HoursWorked>
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
</WeeklyEarningsVerification>
<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-08</WeekBeginDate>
<WeekEndDate>2010-08-14</WeekEndDate>
<HoursWorked>15:00</HoursWorked>
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
</WeeklyEarningsVerification>
<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-15</WeekBeginDate>
<WeekEndDate>2010-08-21</WeekEndDate>
<HoursWorked>15:00</HoursWorked>
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
</WeeklyEarningsVerification>
<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-22</WeekBeginDate>
<WeekEndDate>2010-08-28</WeekEndDate>
<HoursWorked>101:00</HoursWorked>
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
</WeeklyEarningsVerification>
<WeeklyEarningsVerification>
<WeekBeginDate>2010-08-29</WeekBeginDate>
<WeekEndDate>2010-09-04</WeekEndDate>
<HoursWorked>5:00</HoursWorked>
<AmountEarnedForWeek>500.00</AmountEarnedForWeek>
</WeeklyEarningsVerification>

R0

SIDES

#

74

< >T< >

< >ABC TPA< >
< >5555555556<
>

< >Mrs Sue Herman< >
< >Claims Administrator< >
< >5555555557< >
< >sue.herman@abctpa.com< >
< >9< >
< >2011-02-10T13:01:19.000-

05:00< >

< >
< >

4.4.2.2.1.3 State Acknowledgement to the Central Broker

The StateEarningsVerificationResponseCollectionAcknowledgement is initiated once the state
has received its file from the Broker. The acknowledgement must accompany every state Pull
request, as this is the manner in which the Broker knows that the state Pull was successful. This
is required even if the Broker has sent back an empty file and a MessageCode of 2. If this is not
sent back to the Broker, the next “Pull” call to the Broker will result in the same file being passed
back. The Broker will not move on to the next file until it receives a successful
acknowledgement. If the Broker receives 3 unanswered Pull requests, it will suspend any
processing of Pull requests by the State until the Broker Administrator and State Administrator
can work out the problem.

The key field in this message is the StateSOAPTransmissionNumber, which must correspond
with the StateSOAPTransmissionNumber sent back in the Broker Response. The remainder of
the message is just reporting information; the values are not used for anything at this time. If the
state does not collect this information, just return O for the number of records and place a valid
date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>
<StateEarningsVerificationResponseCollectionAcknowledgement xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https:// REDACTED ,REDACTED >

<StateSOAPTransmissionNumber>12345678901234567890123456789012</StateSOAPTrans
missionNumber>
<NumberOfResponseRecordsReceived>0</NumberOfResponseRecordsReceived>
<NumberOfResponseRecordsInError>0</NumberOfResponseRecordsInError>
<DateStartedReceivingTransmission>2001-12-31T12:00:00.00-
04:00</DateStartedReceivingTransmission>
<DateFinishedReceivingTransmission>2001-12-31T12:00:00.00-
04:00</DateFinishedReceivingTransmission>
</StateEarningsVerificationResponseCollectionAcknowledgement>

4.4.2.2.2 Employer/TPA Pull

4.4.2.2.2.1 Pull from Central Broker

SIDESY.

75

The EmployerTPAEarningsVerificationRequestCollectionQuery is a complex query types that
allow the caller to specify one of three operations: a Pull, a Re-Pull by
EmployerTPASOAPTransactionNumber, and a Re-Pull by a Date Range.

<!-- Query element for employer to collect claim responses they are expecting
-——>
<xs:element name="EmployerTPAEarningsVerificationRequestCollectionQuery"
type="EmployerTPAEarningsVerificationRequestCollectionQueryType"/>

<!-- Types for query element for Employers/TPAs to collect claim requests
they are expecting -->
<xs:complexType
name="EmployerTPAEarningsVerificationRequestCollectionQueryType'™>
<xs:sequence>
<xs:element name="UniqueID" type="UniqueIDType" />
<xs:element
name="EmployerTPAEarningsVerificationRequestCollectionQueryCriteria"

type="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaType"
minOccurs="0" />
</xs:sequence>
</xs:complexType>

<xs:complexType
name="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaType'>
<xs:sequence>
<xs:element name="EmployerTPASOAPTransactionNumber"
type="xs:nonNegativelInteger" minOccurs="0" />
<Xs:group
ref="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaGroup"
minOccurs="0"/>
</xs:sequence>
</xs:complexType>

<xXs:group
name="EmployerTPAEarningsVerificationRequestCollectionQueryCriteriaGroup">
<xs:sequence>
<xs:element name="BrokerRecordEffectiveDateFrom"
type="CustomDateTime" />
<xs:element name="BrokerRecordEffectiveDateTo"
type="CustomDateTime" />
</xs:sequence>

</xs:group>
For the straight Pull, the caller needs to supply only the employer or TPA Unique ID. Although
there are different ways to verify the calling employer or TPA besides this element, the Broker

uses it as an additional security check. Also, there is a requirement in WSDL 1.1 that a WSDL
definition have at least one input attribute.

<?xml version="1.0" encoding="UTF-8"?>

SIDESY.

76

<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://
REDACTED /schemas™ xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="https:// REDACTED /schemas REDACTED ">

<UniqueID>BR999999999</UniquelID>
</EmployerTPAEarningsVerificationRequestCollectionQuery>

For the Re-Pull by EmployerTPASOAPTransactionNumber, the caller needs to supply the
Employer/TPA Unique ID and the EmployerTPASOAPTransactionNumber element out of the
EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaType. This will allow the
Broker to send the file defined by the EmployerTPASOAPTransactionNumber.

<?xml version="1.0" encoding="UTF-8"?>
<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://

REDACTED /schemas™ xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas REDACTED >
<UniqueID>BR999999999</UniquelD>
<EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>
<EmployerTPASOAPTransactionNumber>45459</EmployerTPASOAPTransactionNumb
er>
</EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>
</EmployerTPAEarningsVerificationRequestCollectionQuery>

For the Re-Pull by date range, the caller needs to supply the EmployerTPA
Unique ID and the
EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaGroup

WARNING: If the end date
in the Re-Pull by date range

element out of the
EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaType.
The re-pull by date range will pull all the files that were previously pulled
by the connector during the date range specified.

The
EmployerTPAEarningsVerificationResponseCollectionQueryCriteriaGroup
is a complex query type that is defined as a begin date
(BrokerRecordEffectiveDateFrom), an end date
(BrokerRecordEffectiveDateTo) and an
EmployerTPASOAPTransactionNumber.

The first time this operation is called, the

is in the future, this will
cause the Central Broker to
resend all transactions
including all the resent
transactions that the Central
Broker has been delivering
due to this call, thus putting
your Connector into an
infinite loop until that date is
reached. This will tax the
Connector and the Central
Broker needlessly and must
be avoided.

EmployerTPASOAPTransactionNumber must not be included and the date range that the files to
be Re-Pulled are included.

When the Broker sends back the first file in this date range, it will include in the SOAP header
the next EmployerTPASOAPTransactionNumber that it sent during that date range (in element
name NextEmployerTPASOAPTransactionNumber). In the next call to this operation, the caller
must include the NextEmployerTPASOAPTransactionNumber as the

SIDESYs .

EmployerTPASOAPTransactionNumber along with the date range. This differentiates to the
Broker the next call in the series from a brand new Re-Pull by Date request.

When the Central Broker determines that it has no more files to send back to the connector in
the given date range, the last file sent back to the connector is indicated by the Central Broker
not including the next EmployerTPASOAPTransactionNumber (so there will not be a
NextEmployerTPASOAPTransactionNumber included in the http response SOAP header).

First Call:

<?xml version="1.0" encoding="UTF-8"?>
<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://
REDACTED /schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="https:// REDACTED /schemas REDACTED ">
<UniqueID>BR999999999</UniquelD>
<EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>
<BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2010-12-31T00:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>
</EmployerTPAEarningsVerificationRequestCollectionQuery>

Subsequent Calls:

<?xml version="1.0" encoding="UTF-8"?>
<EmployerTPAEarningsVerificationRequestCollectionQuery xmlns="https://

REDACTED /schemas" xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"

xsi:schemalocation="https:// REDACTED /schemas REDACTED ">
<UniqueID>BR999999999</UniquelD>
<EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>

<EmployerTPASOAPTransactionNumber>26101</EmployerTPASOAPTransactionNumber>
<BrokerRecordEffectiveDateFrom>2009-01-01T00:00:00.000-
04:00</BrokerRecordEffectiveDateFrom>
<BrokerRecordEffectiveDateTo>2010-12-31T00:00:00.000-
04:00</BrokerRecordEffectiveDateTo>
</EmployerTPAEarningsVerificationRequestCollectionQueryCriteria>
</EmployerTPAEarningsVerificationRequestCollectionQuery>

4.4.2.2.2.2 Central Broker Response to Employer/TPA

When the Broker receives a “Pull” request from an Employer/TPA, it begins assembling all the
earnings verification requests that are intended for that employer or TPA. It constructs a SOAP
message according to the rules for a SOAP message (less than 8MB, one employer or TPA per
message, etc.). It adds two additional fields to the Request - the BrokerRecordEffectiveDate and
the BrokerRecordTransactionNumber. The BrokerRecordEffectiveDate indicates the date that it
was accepted into the Broker. The BrokerRecordTransactionNumber is a unique record tracking

SIDESY.

number and must be returned on the response for this record. It then sends the requests in the
HTTP response.

< xmlns="https:// REDACTED
/schemas">
< >
< >2015000000000000000000000
0000001< >
< >ST< >
< >0ffice Name< >
< >5555555555< >
< >5555555554< >
< >james.madison@state.gov< >
< >1234567890< >
< >123456789< >
< >ACME< >
< >213456721< >
< >Lastname< >
< >Firstname< >
< >M< >
< >JR< >
< >5< >
< >2010-08~-
01< >
< >2010-09-
04< >
< >This is a comment field for this
Earnings Verification Request< >
< >2010-10-14< >
< >3< >
< >3< >
< >3< >
< >3< >
< >3< >
< >3< >
< >3< >
< >3< >
< >3< >
< >1<
>
< >2010-10-28< >
< >9< >
< >6609< >
< >2011-03-11T13:09:20.000-
05:00< >
< >
< >

4.4.2.2.2.3 Employer/TPA Acknowledgement to Central Broker

The EmployerTPAEarningsVerificationRequestCollectionAcknowledgement is initiated once
the employer or TPA has received its file from the Broker. The acknowledgement must
accompany every employer or TPA Pull request, as this is the manner in which the Broker
knows that the Employer/TPA Pull was successful. This is required even if the Broker has sent
back an empty file and a MessageCode of 2. If this is not sent back to the Broker, the next

SIDESVa

79

“Pull” call to the Broker will result in the same file being passed back. The Broker will not move
on to the next file until it receives a successful acknowledgement. If the Broker receives 3
unanswered Pull requests, it will suspend any processing of Pull requests by the Employer/TPA
until the Broker Administrator and Employer/TPA Administrator can work out the problem.

The key field in this message is the EmployerTPASOAPTransmissionNumber, which must
correspond with the EmployerTPASOAPTransmissionNumber sent back in the Broker
Response. The remainder of the message is just reporting information; the values are not used
for anything at this time. If the EmployerTPA does not collect this information, just return O for
the number of records and place a valid date in the date fields.

<?xml version="1.0" encoding="UTF-8"?>
<EmployerTPAEarningsVerificationRequestCollectionAcknowledgement

xmlns="https:// REDACTED /schemas"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xsi:schemalLocation="https:// REDACTED /schemas REDACTED >
<EmployerTPASOAPTransmissionNumber>3400</EmployerTPASOAPTransmissionNumber>
<NumberOfRequestRecordsReceived>4</NumberOfRequestRecordsReceived>
<NumberOfRequestRecordsInError>0</NumberOfRequestRecordsInError>
<DateStartedReceivingTransmission>2001-12-31T12:00:00.000-
04:00</DateStartedReceivingTransmission>
<DateFinishedReceivingTransmission>2001-12-31T12:00:00.000-
04:00</DateFinishedReceivingTransmission>
</EmployerTPAEarningsVerificationRequestCollectionAcknowledgement>

45 SOAP Action
From the W3C, the SOAPAction component in SOAP 1.1 is defined as follows:

“The SOAPAction HTTP request header field can be used to indicate the intent of the SOAP
HTTP request. The value is a URI identifying the intent. SOAP places no restrictions on the
format or specificity of the URI or that it is resolvable. An HTTP client MUST use this header
field when issuing a SOAP HTTP Request.”

The SOAPAction MUST be specified in the SOAP message. The particular SOAP Action
required for each message is specified in the WSDL.

There are six SOAP Actions that are defined in SIDES for Separation Information:
1. postStateSeparationRequestCollection
2. pullStateSeparationResponseCollection

3. pullStateSeparationResponseCollectionAcknowledgement

SIDESY.

80

4. postEmployerTPASeparationResponseCollection

5. pullEmployerTPASeparationRequestCollection

6. pullEmployerTPASeparationRequestCollectionAcknowledgement
There are six SOAP Actions that are defined in SIDES for Earnings Verification:

1. postStateEarningsVerificationRequestCollection

2. pullStateEarningsVerificationResponseCollection

3. pullStateEarningsVerificationResponseCollectionAcknowledgement

4. postEmployerTPAEarningsVerificationResponseCollection

5. pullEmployerTPAEarningsVerificationRequestCollection

6. pullEmployerTPAEarningsVerificationRequestCollectionAcknowledgement

4.6 WSDL

The Web Services Description Language (WSDL) is an XML-based language that provides a
model for describing Web services. WSDL defines an XML grammar for describing network
services as collections of communication endpoints capable of exchanging messages. WSDL
service definitions provide documentation for distributed systems and serve as a recipe for
automating the details involved in applications communication.

The WSDL for SIDES is broken into two files per Standard Format. StateBroker.wsdl for
Separation Information and EarningsVerificationStateBroker.wsdl for Earnings Verification
describe the interfaces exposed to the States from the Broker. EmployerTPABroker.wsdl for
Separation Information and EarningsVerificationEmployerTPABroker.wsdl for Earnings
Verification describe the interfaces exposed to the employer or /TPA from the Broker. Note that
the Push to the employer or TPA is not described in these WSDLs because that function belongs
in the WSDL for the connector Web Service. (See the full WSDL below for a complete
description.)

e State Separation Information WSDL.:
REDACTED

e Employer/TPA Separation Information WSDL.:
REDACTED

e State Earnings Verification WSDL.:
REDACTED

SIDESY

81

e Employer/TPA Earnings Verification WSDL:
REDACTED
There is no Policy information contained within these WSDLs. This was done for

interoperability reasons. If a connector is using a technology that requires the use of Policy
information, a state WSDL has been provided within the JAX-WS Model Connector.

4.6.1 WSDL XSD

Along with each WSDL, there are XSD files that define the elements in the WSDL. These
schema files are StateTransmissionQuery.xsd and EmployerTPATransmissionQuery.xsd for
Separation Information, and EarningsVerificationStateTransmissionQuery.xsd and
EarningsVerificationEmployerTPATransmissionQuery.xsd for Earnings Verification. There is
one support file - TransmissionQueryCommonElements.xsd — used by both exchanges. The
XSDs for the current data elements can be found at:

e Separation Information
REDACTED

e Earnings Verification
REDACTED

e Common Elements

REDACTED

One XSD file, combined.xsd, is used to include other XSD files in the system and it does not
contain any additional information. This file is required due to a problem accessing the https://
REDACTED /schemas namespace in multiple files within the Java libraries used in SIDES. The
combined.xsd file is used internally by the Central Broker to allow XSD checks to take place
on all the SOAP messages and records sent in by the connectors.

The combined.xsd file may be used by connector software, but it is not necessary if the
technology and libraries used in the connectors’ implementation do not require it. The
combined.xsd file can be found at:

https:// REDACTED /schemas/combined.xsd

4.6.2 State WSDL

4.6.2.1 State Post WSDL

4.6.2.1.1 Separation Information State Post WSDL

The WSDL for the state Post operation in Separation Information is defined as

<wsdl:operation name="postStateSeparationRequestCollection'™
<soap:operation soapAction="postStateSeparationRequestCollection" />
<wsdl:input name="StateSeparationRequestCollection'™

SIDESY

82

<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="StateSeparationRequestCollectionAcknowledgement">
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

The input (HTTP request) to this operation is a StateSeparationRequestCollection as defined in
SeparationRequest.xsd.

The output (HTTP response) is a StateSeparationRequestCollectionAcknowledgement as defined
in the SeparationRequest.xsd.

4.6.2.1.2 Earnings Verification State Post WSDL

The WSDL for the state Post operation in Earnings Verification is defined as

<wsdl:operation name="postStateEarningsVerificationRequestCollection'">

<wsdl:input message="tns:StateEarningsVerificationRequestCollection"
name="StateEarningsVerificationRequestCollection'>

</wsdl:input>
<wsdl:output

message="tns:StateEarningsVerificationRequestCollectionAcknowledgement"

name="StateEarningsVerificationRequestCollectionAcknowledgement'™>

</wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is a StateEarningsVerificationRequestCollection as
defined in EarningsVerificationRequest.xsd.

The output (HTTP response) is a StateEarningsVerificationRequestCollectionAcknowledgement
as defined in the EarningsVerificationRequest.xsd.

4.6.2.2 State Pull WSDL
4.6.2.2.1 Separation Information State Pull WSDL

The WSDL for the state Pull operation in Separation Information is defined as:

<wsdl:operation name="pullStateSeparationResponseCollection">
<soap:operation soapAction="pullStateSeparationResponseCollection" />
<wsdl:input name="StateSeparationResponseCollectionQuery'™>
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="StateSeparationResponseCollection">
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

The input (HTTP request) to this operation is a StateSeparationResponseCollectionQuery as
defined in StateTransmissionQuery.xsd.

SIDESY.

83

The output (HTTP response) is a StateSeparationResponseCollection as defined in the
SeparationResponse.xsd.

4.6.2.2.2 Earnings Verification State Pull WSDL

The WSDL for the state Pull operation in Earnings Verification is defined as:

<wsdl:operation name="pullStateEarningsVerificationResponseCollection'">
<wsdl:input
message="'tns:StateEarningsVerificationResponseCollectionQuery"
name="StateEarningsVerificationResponseCollectionQuery">
</wsdl:input>
<wsdl:output message="tns:StateEarningsVerificationResponseCollection"
name="StateEarningsVerificationResponseCollection'>
</wsdl:output>
</wsdl:operation>

The input (HTTP request) to this operation is a
StateEarningsVerificationResponseCollectionQuery as defined in
EarningsVerificationState TransmissionQuery.xsd.

The output (HTTP response) is a StateEarningsVerificationResponseCollection as defined in the
EarningsVerificationResponse.xsd.

4.6.3 Employer/TPA WSDL
4.6.3.1 EmployerTPA Post WSDL
4.6.3.1.1 Separation Information EmployerTPA Post WSDL

The WSDL for the employer or TPA Post operation in Separation Information is defined as:

<wsdl:operation name="postEmployerTPASeparationResponseCollection'™
<soap:operation
soapAction="postEmployerTPASeparationResponseCollection" />
<wsdl:input name="EmployerTPASeparationResponseCollection'™
<soap:body use="literal" />
</wsdl:input>
<wsdl:output
name="EmployerTPASeparationResponseCollectionAcknowledgement'">
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

The input (HTTP request) to this operation is an EmployerTPASeparationResponseCollection as
defined in SeparationResponse.xsd.

The output (HTTP response) is an
EmployerTPASeparationResponseCollectionAcknowledgement as defined in the
SeparationResponse.xsd.

4.6.3.1.2 Earnings Verification EmployerTPA Post WSDL

SIDESY.

84

The WSDL for the employer or TPA Post operation in Earnings Verification is defined as:

<wsdl:operation name="postEmployerTPAEarningsVerificationResponseCollection'>
<wsdl:input message="tns:EmployerTPAEarningsVerificationResponseCollection"”
name="EmployerTPAEarningsVerificationResponseCollection'>
</wsdl:input>
<wsdl:output
message="tns:EmployerTPAEarningsVerificationResponseCollectionAcknowledgement

”n
name="EmployerTPAEarningsVerificationResponseCollectionAcknowledgement'>
</wsdl:output>

</wsdl:operation>

The input (HTTP request) to this operation is an
EmployerTPAEarningsVerificationResponseCollection as defined in
EarningsVerificationResponse.xsd.

The output (HTTP response) is an
EmployerTPAEarningsVerificationResponseCollectionAcknowledgement as defined in the
EarningsVerificationResponse.xsd.

4.6.3.2 EmployerTPA Pull WSDL
4.6.3.2.1 Separation Information EmployerTPA Pull WSDL

The EmployerTPA Pull operation for Separation Information is defined as

<wsdl:operation name="pullEmployerTPASeparationRequestCollection'>
<soap:operation soapAction="pullEmployerTPASeparationRequestCollection" />
<wsdl:input name="EmployerTPASeparationRequestCollectionQuery">
<soap:body use="literal" />
</wsdl:input>
<wsdl:output name="EmployerTPASeparationRequestCollection'™
<soap:body use="literal" />
</wsdl:output>
</wsdl:operation>

The input (HTTP request) to this operation is an
EmployerTPASeparationRequestCollectionQuery as defined in
EmployerTPATransmissionQuery.xsd.

The output (HTTP response) is an EmployerTPASeparationRequestCollection as defined in the
SeparationRequest.xsd.

4.6.3.2.2 Earnings Verification EmployerTPA Pull WSDL

The EmployerTPA Pull operation for Earnings Verification is defined as

<wsdl:operation name="pullEmployerTPAEarningsVerificationRequestCollection'>
<wsdl:input
message="tns:EmployerTPAEarningsVerificationRequestCollectionQuery"
name="EmployerTPAEarningsVerificationRequestCollectionQuery">
</wsdl:input>

SIDESY.

85

<wsdl:output message="tns:EmployerTPAEarningsVerificationRequestCollection"”
name="EmployerTPAEarningsVerificationRequestCollection'>
</wsdl:output>
</wsdl:operation>

The input (HTTP request) to this operation is an
EmployerTPAEarningsVerificationRequestCollectionQuery as defined in
EarningsVerificationEmployerTPATransmissionQuery.xsd.

The output (HTTP response) is an EmployerTPAEarningsVerificationRequestCollection as
defined in the EarningsVerificationRequest.xsd.

SIDESY.

86

5 C-BUILD THE CONNECTOR: SECURING THE MESSAGE

REDACTED

SIDESY.

87

6 D-CONNECT WITH THE CENTRAL BROKER: SENDING THE MESSAGE

6.1 Sending a message

The destination address for all messaging with the Central Broker for the Separation
Information exchange is:

REDACTED

The destination address for all messaging with the Central Broker for the Earnings Verification
exchange is:

REDACTED

6.2 Sample SOAP message sent

Below is a sample of a State SOAP message that a connector has sent to the Broker for
Separation Information:

Sample State SOAP Message
REDACTED
6.3 Acknowledgements

The acknowledgement in any of the message types is an important part of the transaction. They
let the receiver know that the file has successfully made it to its destination, regardless of the
individual records success or failure. If an acknowledgement is not received within 15 minutes of
sending a message, failure must be assumed and the message should be sent again.

A message failure and re-send could be an infinite cycle if one of the connectors is having
difficulty. Therefore, connectors must be implemented to limit this process to occur only three
times (an initial time plus two retries) in an automated fashion before contacting the connector’s
SIDES administrator. The state, employer, or TPA administrator can then begin debugging the
problem. If the problem was noted by the Central Broker, the SIDES Broker Administrator
will be notified and error resolution will be started on the Central Broker side also.

6.4 Non-Broker Returns

There are some messages that a state, employer, or TPA connector may receive when attempting
to communicate with the Central Broker that are non-standard Central Broker return
messages. These messages were not discussed earlier in this document as part of the message
exchange with the Central Broker as they are not message related but, rather, are overall
system-related return messages. These must be handled by all Central Broker client connectors.

SIDESY

88

1. “Ul sIDES Server Error has occurred. Please try again in a few minutes or contact your
Ul sIDES Administrator for assistance.”

REDACTED
2. A no response. A [404] Http Error.

REDACTED

SIDESY.

89

7 E-CONNECT WITH THE CENTRAL BROKER: TESTING CONNECTOR
SOFTWARE

The connector software must be designed, coded and thoroughly tested to ensure correct
functionality when interfacing with the Central Broker. Connector testing responsibilities are
highlighted as well as key points for consideration when testing your connector software. To
support connector testing, a set of tools are available to aid in the development and testing
process.

7.1 Connector Responsibility

It is the state or employer/TPA’s responsibility to fully test their SIDES implementation.
Connector testing includes the backend system components, system interfaces, and the connector
software that interacts with the Central Broker. The connector’s process for testing is not
prescribed as different organizations must follow their own testing procedures and standards.
However, to test the connector with the Central Broker, the SIDES certification test process (see
Section 8) including injection of XML certification test data (see section 9.2.2.1) must be
followed.

This Developer Guide not only provides developers with a roadmap for constructing the
connector, but also serves as a tool the test team may use to support comprehensive testing of the
connector software. The following list highlights key points to be considered when testing your
connector software:

e Creation of the Request or Response XML
o All the data required in the Standard Format is being accessed correctly
e The XML data format (Standard Format)

o XSD violations of the Standard Format must be trapped and handled on the connector
side.

o For a State using the Separation Information Standard Format, all the
ClaimantSepReasonCodes have been tested along with any business rule
dependencies on the individual ClaimantSepReasonCode.

o For the employer/TPAs using the Separation Information Standard Format, all the
EmployerSepReasonCodes have been tested along with any business rule
dependencies on the individual EmployerSepReasonCode.

o Other values that are called out in the Standard Format. A test case should not only
be made for the negative (error) conditions, but also the positive (non error)
conditions — especially around the boundaries.

o The entire set of error codes, which result from business rule violations, must be
handled. This must be performed to cover the case where an error code is received

SIDESY

90

internally before the message is generated and after the message is sent and the error
code comes back in the acknowledgment.

e SOAP concepts
o All of the required custom headers are included with the message.
o The SOAP action is part of the https message.
o Generation of the digital signature and encryption occurs correctly.
o The message timestamp has a 15 minute time to live.

e Message Codes

o Central Broker generated message codes on the acknowledgment of a Post and an
http response on the Pull.

o Connector generated message codes on the acknowledgement of a Pull.
e Duplicate records
o Duplicate records Pulled in the same file and in a different file.
7.2 Tools

This section describes the tools available to aid development and testing of the connector
software. The first tool provided is a set of state and employer/TPA Model Connectors. The
Model Connectors serve two main purposes: 1) to provide a road map in creating the connector
software and 2) to provide the connector with an “opposing” endpoint they can send/receive
messages to and from.

The second tool provided is a business rule processor tool (BRPT). The BRPT also has two
uses. The first use is to provide a simulated Central Broker, allowing a connector to simulate
exchanging messages with the Central Broker while their connection piece is being
constructed, prior to connection the real Central Broker. The other use of the BRPT is to verify
the connector software business rules are behaving in the same manner as the Central Broker.

7.2.1 Model Connectors

The state and employer/TPA Model Connectors are a set of tools that allow a proven method of
communicating with the SIDES Broker right out of the box. These components may be used as a
“black-box”, which may be linked with the Endpoint’s back-end software to facilitate integration
with the Central Broker. Alternatively, SIDES connector developers may construct their own
SIDES connector, and use the Model Connector to help with all aspects to connect with the
Central Broker including security and the proper construction of the SOAP message.

SIDESY 01

The Model Connectors are available in the following technologies:

e Spring-WS - Java
e JAX-WS —Java
e Microsoft .Net — C#

The Model Connectors are designed to operate as a “black-box” so states, employers, and TPAs
do not have to build their own connector software. Please be aware that the Model Connectors
will be updated to accommodate new SIDES exchanges as they are completed. Also, periodic
updates to the Model Connectors may be released to address software enhancements or to
remediate defects. Source code for the Model Connectors are provided so states, employers, or
TPAs may make adjustments (if necessary) to operate within their environment. Please be aware
that the SIDES Team will not carry forward any custom software changes made to the Model
Connectors, and the Endpoints must re-apply the changes to new versions of the Model
Connector.

Prior to deployment of the Model Connector into production operations, the state, employer, or
TPA, must conduct testing with real scenarios/data against the SIDES Broker Test environment.
This testing is imperative to ensure:

e Proper integration with the back-end system
e Correct processing and interpretation of log files, request files, and response files

e There are no unanticipated data sets, which may not be processed by the Model
Connector.

Contact the Broker Team to discuss any Model Connector enhancements or to report software
defects.

The Model Connectors can also provide an opposite endpoint (employer/TPA for states; states
for employer/TPAs) to help with the developer’s end-to-end testing without the need for an
actual endpoint to be participating.

As an example, consider where ‘State X’ is in initial construction of its software. ‘State X’ needs
to produce messages and consume messages through the Central Broker. ‘State X’ wants to
know what the messages that they send to the employer/TPA look like, and they need an
employer/TPA to answer their requests in order to test their consumption portion. The emulated
employer/TPA can act as the endpoint that the State is communicating without relying on an
actual employer/TPA system on the other side of the Broker.

‘State X’ can accomplish this simulation in the following manner.

SIDESY

92

1. ‘State X’ creates request files to be sent to their emulated employer/TPA,
‘employer/TPA Y’. Note: The emulated ‘employer/TPA Y’ has already been created in
the Central Broker by the Broker Administrator.

‘State X’ Posts the file to ‘employer/TPA Y.

3. ‘State X’, using the employer/TPA Model Connector, Pulls messages from the Central
Broker as ‘employer/TPA Y’. This gives ‘State X’ the
BrokerRecordTransactionNumbers of all of the requests.

4. ‘State X’ creates responses to their own requests, filling in the backfilled data as required
by employer/TPAs.

5. Using the employer/TPA Model Connector, ‘State X’ Posts all of ‘employer/TPA Y’s
responses back to themselves.

6. ‘State X’ can then Pull responses from the Central Broker which will include
‘employer/TPA Y’’s responses.

no

For the Pull action, an acknowledgement is automatically sent to the Broker after a Pull action
downloads the file from the Broker. This ensures the Model Connector completes the full Pull
action.

The Model Connector demonstrates how a state can access the Ul SIDES Broker Web services
using the different Model Connector libraries. It can accomplish both a Post to the Central
Broker or a Pull from the Central Broker. There are two ways it can accomplish these actions.
The first method is by calling the Model Connector with the XML payload and the SOAP header
values as input. The second method is by calling the Model Connector with an ASCII data file
that contains the same data as within the XML file and the SOAP Headers. Figure 1 and Figure 2
are detailed diagrams of steps taken by the State, the Model Connector and the Central Broker
for both the Post and Pull with the ASCII file. The ASCII file is a new format and a discussion
of this format is below.

SIDESY

93

STATE

STATE MODEL CONNECTOR

CENTRAL BROKER

1. State write extract from
Benefit System, generates ASCII
file with associated attachments
and stores in file system.

1. Write
FILE SYSTE
P
2. Read
REQUEST >

LOG FILES:
3. Write PIN

- Debug Log

-BRPTL0Z g Logs

- Results Log

- PIN Log
4, Write
BEPT Logs

&. Write Results and
Debug Log

9. State review log files. State
staff may manually review file
logs, email log files, or establish
staff alerts to investigate log
files.

Mote: The State must act on
business rule violations and
failed posts by correcting errors
and reposting.

10, State marks request
successtully posted to the
Central Broker in their system
o prevent sending duplicate
requests,

Posts requests to Central
Broker.

1. Read requests and

associated attachments from
file system, convert requests
into SIDES compliant XML.

3. Generate PIN if requested
by state and write to PIN log
file

4. Apply business rules and
write BRPT log for records in
error,

5. Gienerate secured SOAP
message,

6. Post réguests 1o Central
Broker, (Loop for 3 times if’
o response is received)

7. Accept post Central
Broker message code.

8. Write results post log file
and debug log file to file
system (one i ¢lean readable
format, the other in with
debug statements to help
resolve errors).

6. Post

SIDES
INFRASTRUCTURE

el

v

CENTRAL
BROKER

7.
Message
Code

Requests staged for
employer / TPA

SIDES

Figure 1. Model Connector Post for ASCII Files

)

#

94

STATE STATE CONNECTOR CENTRAL BROKER

Pulls requests to Central
. Broker.
1. State submits response pull roker
query 1o tnlf.- system. (pull, pull 2. Read pull query Erom file
by transaction number, or pull by N
system.
date) :
3. Pull response SOAP i Pull SIDES
message from Central h INFRASTRUCTURE
F"-'_._-___-_‘-‘-"\ -
ILE SYSTE Broker. {single pull or loop,
H . ;
2. Read Pull Query configurable by state)
PULL QGUERY
4. Decrypt each response file CENTRAL
. d form XML file. BROKER
LOGFILES: | 5 write BRPT Logs| [0 e
6. Post
- E;tlzjuTg Log Vi ul 5. Apply business rules, and ;‘\clcm
B Log 7. Write Results write to the BRPT log records
- Results Log and Debug Log . : - Code
- = with business rule violations. (e Emplayer / TPA responses
staged for state
RESPONSE 6. Acknowledge file pulled
from the Central Broker.
#. Write PDF and/or
ASCIHI Responses and 7. Write results post log file
attachments (in native and debug log file to file
format) to File System system,
8, Transform XML message o
9. Read Message Code, State A andior B:
calls pull function and reads
message code returned from AL Write PDF response file
Central Broker. [floop and associated attachments (in
parameter is not used, the State native format) to file system.
continues to pull until a message
code © 2 is returned, B. Write ASCII response file
10. State obtain responses and and associated attachments (in
» State obiain responses an native format) to file system,
attachments and route to business

uttit,

Figure 2. Model Connector Pull for ASCII Files

)

SIDES

#

7.2.1.1 Setup State Model Connector

To begin using the State Model Connector, the state must first download the software from the
sides.itsc.org website.

There are two options for download of the State Model Connector.

The first option is the ‘Black Box’ approach. This download contains only the executable file(s)
and any support files and/or directories required to run the employer Model Connector. The data
directory contains some test files used to construct the Model Connector. The readme.txt file
indicates how to execute the application, which is discussed below.

Option 2 is the full State Model Connector project. This download contains a directory that has
the executable files and the source files. The State Model Connector project contains all files
required to be loaded into the Eclipse IDE or Visual Studio 2010 with minimal adjustments
required.

To learn more about the setup and running of the particular technology, please see the section
below that corresponds to the technology desired.

7.2.1.1.1 State Requirements for ASCII file

All of the state requirements detailed in Part B of this document are still applicable for the ASCII
file. In particular, when creating the ASCII file, you must make sure that it falls under the 8
megabyte limit or it will be rejected by the Central Broker. Attachments are handled the same
way within the ASCII file as they are within the XML; the software expects attachments to be
encoded into the ASCII file. The one minor difference between the XML and ASCI| file is that
when placing an encoded file into the ASCII file it must be a continuous string with no newline
characters in it (must not be chunked). If the ASCII file contains newlines characters in the
encoded attachment, the data file reader will not work correctly.

7.2.1.1.2 Request Input

Input files are specified on the command line used to execute the Model Connector. See
examples below.

7.2.1.1.3 Response Output

The SIDES Model Connector can provide responses in ASCII format, PDF, or both ASCII and
PDF. In all cases, the responses are available in XML format. ASCII and PDF output files are
specified in the runtime configuration parameters. The XML response output file is contained in
the results Log file, whose path is specified in the runtime configuration parameters.

7.2.1.1.4 ASCII File Specification — Separation Information Post

The ASCII file ingested by the Model Connector on the Post has two main sections. Section 1
(SOAP Headers) describes the SOAP Headers that must be placed on the SOAP message. The

SIDESY

96

second section (Request) describes the actual request records. These are discussed further
below. Any line in the ASCII specification that is empty or contains a # character as the first
character is ignored. The # allows comments to be placed in the file.

#50AF HeaderWalues
Ta: Soap

From:
FileGuid: Headers

Optional iftheywantto paricipate with the SEWN
SEIN:
PIN:

Repeatable
StateRequestRecord&UID: Request
SEM:

ClaimEffective [ate: #1
ClaimMumber:
StateEmployerfccountibr:
EmployerMame:

FEIM:

TypeofEmployerCode:
TypeofClaimCode:
BenefitvearBeginD ate:
RequestingStateAbbreviation:
UofficeMame:

UlOfficePhone:

UofficeF ax

ClaimantlastName:
OtherLastName:
ClaimantFirstName:

Claimanthdid dlelnitial:
Claimantsuffi:
Claimantlob Title:
ClaimantReportedF st ayofullodi:
ClaimantReportedlLasth ayofuliod:
WagesifecksieededCode:
WagesHeededBeyginl ate:
WagesHeadedEndD ate:
ClaimantsepReasonCade:
ClaimantSepR & asonComme nts:
FeturntoiifodD ate:

Repeatable
UniqueAttachmentlid:
Drezcriptionoffttach mentCode:
Typeoflocument:
Actionablefttachment
AttachmentSize:

Attachmenthata: End of

Requesthate: RequeSt
Responseluel ate: #1
FormMumber:

SIDESY

97

The SOAP headers section of the ASCII file contains the routing information discussed in
section 4.3-SOAP Custom Headers. It must contain the following information:

Table 32 - State Post to Broker

Header Element | Required Definition Example

To Y The Unique 1D of the employer or TPA | BR0O00000003
to which the message is intended

For a web services request, the ‘To’ field
will always contain ‘BR’ followed by
nine digits. For a SEW request, the ‘To’
field will contain the FEIN.

From Y The Unique ID of the state where the uT
message originated

FileGUID Y The state-generated GUID applied to this | A42A1FBDAC9549
message that can uniquely identify this AC7D8D3F45E404
file 0319

Size is 32 hexadecimal digits

For SEW requests, the SOAP header must contain the SEIN and the PIN.

Table 33 - State Post to Broker - SIDES Employer Website

Header Element | Required Definition Example
N The SEIN of the employer or TPA to 123456789
which the message is intended. For those
SEIN states that do not use the SEIN, this must

equal the FEIN

Size is up to 20 digits

PIN N The PIN to which the state wants to 435222169876
assign this request for this employer or
TPA

Size is up to 20 characters

SIDESY 98

The Request section of the ASCII file contains the actual request record or records. There can be
multiple request records in a file. Each request record must start with the element name
StateRequestRecordGUID. Within the record itself, there can also be repeatable attachment
sections (up to 10 attachments according to the Separation Information specification). The
attachment section must contain all of the information on a particular attachment before moving
on to the next attachment. Each line in the record contains the Data Element Name as described
in the Implementation Guide followed by a colon (:) followed by the value given to that element
name. The value must be contained all on a single line. If the data element value is null, it must
not be in the ASCI| file.

7.2.1.1.5 ASCII File Specification — Separation Information PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections. Section 1
describes the SOAP Headers, which must be placed on the SOAP message. Section 2 describes
the Pull Collection Query. These are discussed below. Any line that is empty or has a #
character as the first character in it is ignored. The # allows comments to be placed in the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts
described in section 4.3.2-State Pull.

e Regular Pull

#FSO0AF HeaderWalues
From:

To:

FullCollection:

#FPull Guen Walues

#Filandatary field, same as Fromwalue
StatePostalCode:

e Pull By State Soap Transaction Number

#50AP Headeralues

From:

To:

PullCollection:
StateS0APTransactionMumber:

#FPull Query Values
#mandatory field, same as Fromyvalue
StatePostalCode:

#optionalfields based on PullCallectionvalue
StateSOAPTransactionMumber:

SIDESY

99

e Pull By Date

#S0AP Headeralues
From:
To:

PullCollection:
StateS0APTransactionMumber:

#FPull CQuery Values
#mandatory field, same as Fromyalue
StatePostalCode:

Foptionalfields hased on PullCollectionwalue
StateS0APTransactionMumber:
BrokerRecordEffectiveDateFram:
BrokerRecordEffectiveDateTo:

If specified in the configuration file, the State Model Connector will return the responses in an
ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 34 - Broker Response to Request (Regular Pull)

Header Element Definition Example
To The Unique ID of the state that requested the uT
Pull
From The Unique ID of the employer or TPA from BR000000001

which these response records originated

StateSOAPTransactionNu | The unique number assigned to this file by the | 3565
mber Broker

MessageCode The acknowledgement code applied to the 1
message that indicates success or failure of the
entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The
format will be the same as described in the post, where there is an element name followed by a

SIDESY 100

colon (:) followed by the value being returned. A complete file specification containing all data
elements is not provided as the returned file is dynamic, based upon the business rules. SIDES
participants should rely on the standard format to ensure all response values are ingested by the
back-end system. The following is an example Response file.

#SOAP Headers

To:ST

From:BR999999999
StateSOAPTransactionNumber:142998
MessageCode: 1

#Separation Response
StateRequestRecordGUID:30000000000000000000000000004005
BrokerRecordTransactionNumber:2013891
SSN:560348479

ClaimEffectiveDate:2007-06-04
ClaimNumber:378621
StateEmployerAccountNbr:0065560
CorrectedEmployerName:J C Penny
CorrectedStateEmployerAccountNbr:0123456789
CorrectedFEIN:987654321

OtherSSN:660348479
ClaimantNameWorkedAsForEmployer:Charlie Wilson
ClaimantJobTitle:Customer Service Associate
SeasonalEmploymentInd:Y
TotalEarnedWagesNeededInd:2
TotalWeeksWorkedNeededInd:2
AverageWeeklyWage:125.00
EmployerSepReasonCode: 5

ReturnToWorkInd:N
ReturnToWorkDate:2010-01-01
WorkingAllAvailableHoursInd:Y

#Remuneration occurence
RemunerationTypeCode:5
RemunerationAmountPerPeriod:999.99
RemunerationPeriodFrequencyCode:W
DateRemunerationIssued:2007-10-15
EmployerAllocationInd:Y
AllocationBeginDate:2007-10-15
AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40
MandatoryPension:N
ContributoryorNotContributoryClaimantInd:Y
ClaimantPensionContributionPercent:100
EmployerSepReasonComments:EmployerSepReasonComments
DischargeReasonCode:5
FinalIncidentReason:FinalIncidentReason
FinalIncidentDate:2007-10-22
ViolateCompanyPolicyInd:N
DischargePolicyAwareExplanationCode:W

WhoDischargedName:Charlie Wilson

SIDESYA 101

WhoDischargedTitle:Customer Service Associate

VoluntarySepReasonCode:5
HiringAgreementChangesCode:5

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:Y

ActionTakenComments:ActionTakenComments

ContinuingWorkAvailableInd:Y

VoluntarySepReasonComments:The claimant quit without giving JCPenney a

reason.

PreparerTypeCode:E
PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones
PreparerTitle:Project Manager
PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com
BrokerRecordEffectiveDate:2011-04-08T15:28:41-0400

#Separation Response

StateRequestRecordGUID:30000000000000000000000000004003
BrokerRecordTransactionNumber:2013889

SSN:560348477
ClaimEffectiveDate:2007-06-04
ClaimNumber:388620
StateEmployerAccountNbr:0065560
CorrectedEmployerName:J C Penny

CorrectedStateEmployerAccountNbr:0123456789

CorrectedFEIN:987654321
OtherSSN:660348477

ClaimantNameWorkedAsForEmployer:Andy Wilson
ClaimantJobTitle:Customer Service Associate

SeasonalEmploymentInd:N

EmployerReportedClaimantFirstDayofWork:2007-10-11
EmployerReportedClaimantLastDayofWork:2007-10-14

EffectiveSeparationDate:2007-10-14
TotalEarnedWagesNeededInd:3
TotalWeeksWorkedNeededInd:3
AverageWeeklyWage:125.00
EmployerSepReasonCode: 3
ReturnToWorkInd:N
WorkingAllAvailableHoursInd:N

NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason

LaborDisputeTypeInd:L

#Remuneration occurence
RemunerationTypeCode: 3
RemunerationAmountPerPeriod:999.99
RemunerationPeriodFrequencyCode:B
DateRemunerationIssued:2007-10-15
EmployerAllocationInd:N
AllocationBeginDate:2007-10-15
AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40
MandatoryRetirementInd:N

SIDESY.

102

MandatoryPension:N
ContributoryorNotContributoryClaimantInd:N
ClaimantPensionContributionPercent:100
DischargeReasonCode: 3
FinalIncidentReason:FinalIncidentReason
FinalIncidentDate:2007-10-13
ViolateCompanyPolicyInd:N
DischargePolicyAwareInd:N
DischargePolicyAwareExplanationCode:V

#Prior Incident occurence
PriorIncidentDate:2007-10-10
PriorIncidentReason:None
PriorIncidentWarningInd:Y
PriorIncidentWarningDate:2007-10-10
PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson

WhoDischargedTitle:Customer Service Associate
VoluntarySepReasonCode:3

HiringAgreementChangesCode:3
HiringAgreementChangesComments:HiringAgreementChangesComments
ClaimantActionsToAvoidQuitInd:N

ContinuingWorkAvailableInd:N

PreparerTypeCode:T

PreparerCompanyName:J C Penny
PreparerTelephoneNumberPlusExt:9724312108
PreparerContactName:Ed A Jones
PreparerTitle:Project Manager
PreparerFaxNbr:9725312108
PreparerEmailAddress:edjones@jcpenneytest.com
BrokerRecordEffectiveDate:2011-04-08T15:28:39-0400

#Separation Response
StateRequestRecordGUID:30000000000000000000000000004004
BrokerRecordTransactionNumber:2013890
SSN:560348478

ClaimkEffectiveDate:2007-06-04

ClaimNumber:388620
StateEmployerAccountNbr:0065560
EmployerReportedClaimantFirstDayofWork:2007-10-11
EmployerReportedClaimantLastDayofWork:2007-10-14
EffectiveSeparationDate:2007-10-14
TotalEarnedWagesNeededInd:3
TotalWeeksWorkedNeededInd:3
AverageWeeklyWage:125.00

EmployerSepReasonCode: 4

ReturnToWorkInd:Y

ReturnToWorkDate:2010-01-01
WorkingAllAvailableHoursInd:Y

#Remuneration occurence
RemunerationTypeCode: 4
RemunerationAmountPerPeriod:999.99
RemunerationPeriodFrequencyCode:M

SIDESY.

103

DateRemunerationIssued:2007-10-15
EmployerAllocationInd:Y
AllocationBeginDate:2007-10-15
AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40
MandatoryRetirementInd:N
MandatoryPension:N
ContributoryorNotContributoryClaimantInd:Y
ClaimantPensionContributionPercent:100
EmployerSepReasonComments:EmployerSepReasonComments
DischargeReasonCode: 4
FinalIncidentReason:FinalIncidentReason
FinalIncidentDate:2007-10-13
ViolateCompanyPolicyInd:Y
DischargePolicyAwareInd:Y
DischargePolicyAwareExplanationCode:W

#Prior Incident occurence
PriorIncidentDate:2007-10-10
PriorIncidentReason:None
PriorIncidentWarningInd:Y
PriorIncidentWarningDate:2007-10-10
PriorIncidentWarningDescription:Verbal

WhoDischargedName:Brian Wilson
WhoDischargedTitle:Customer Service Associate
VoluntarySepReasonCode:4
HiringAgreementChangesCode:4

HiringAgreementChangesComments:HiringAgreementChangesComments

ClaimantActionsToAvoidQuitInd:Y
ActionTakenComments:ActionTakenComments
ContinuingWorkAvailableInd:Y

PreparerTypeCode:E

PreparerCompanyName:J C Penny
PreparerTelephoneNumberPlusExt:9724312108
PreparerContactName:Ed A Jones
PreparerTitle:Project Manager
PreparerFaxNbr:9725312108
PreparerEmailAddress:edjones@jcpenneytest.com
BrokerRecordEffectiveDate:2011-04-08T15:28:40-0400

7.2.1.1.6 ASCII File Specification — Earnings Verification POST

The ASCII file ingested by the Model Connector on the Post has two main sections to it. Section
1 describes the SOAP Headers that must be placed on the SOAP message. Section 2 describes
the actual request record(s). These are discussed below. Any line that is empty or has a #
character as the first character in it is ignored. The # allows comments to be placed in the file.

SIDESY.

104

#S0AF Headeralues
To:

Fram:

FileGuid:

#F Optional if they want to paricipate with the SEW

FIrd:

#Regquest

StateEarningsWerificationRequestRecord GUID:

FequestingStateAbhbreviation:
LIOfficeMame:
LofficePhone:

LNOfficeF ax
LIOfficeEmailaddress:
StateEmploverAccounthir:
FEIM:

Employertame:

S5M:

ClaimantLastMame:
ClaitmantFirstharme:
ClaimantMiddlelnitial:
Claimantsufix
MumberofiWeeksRequested:

Earningsyerification®eekBeginDate:

Earningserification®eekEndDate:
EarningsYerificationComments:
ReguestDate:
EarningsStatusCode:
TipsStatusCode:
CommissionStatusCode:
BonusStatusCode:
VacationStatusCode:
SickLeaveStatusCode:
HaolidayStatusCode:
SeveranceStatusCode:
WanesinLieuStatusCode:

Earnings¥erificationResponse Commentindicatar:

ResponseDueDate:
EarningsyerificationSourceCode;

Soap
Headers

Request

#1

End of
Request

#1

The first part of the ASCII file contains the SOAP headers. This is the routing information
discussed in section 4.3-SOAP Custom Headers. It must contain the following information:

Table 35 - State Post to Broker

Header Element | Required Definition Example
To Y The Unique 1D of the employer or TPA BR000000003
to which the message is intended
For a web services request, the ‘To’ field
will always contain ‘BR’ followed by
SIDESV

105

Header Element | Required Definition Example

nine digits. For a SEW request, the ‘To’
field will contain the FEIN.

From Y The Unique ID of the state where the uT
message originated

FileGUID Y The state-generated GUID applied to this | A42A1FBDAC9549
message that can uniquely identify this AC7D8D3F45E404

file 0319

Size is 32 hexadecimal digits

For SEW requests, the PIN is required.

Table 36 - State Post to Broker - SIDES Employer Website

Header Element | Required Definition Example
PIN N The PIN to which the state wants to 435222169876
assign this request for this employer or
TPA

Size is up to 20 characters

The second part of the ASCII file is the actual request record(s). There can be multiple request
records in a file. Each request record must begin with the element name
StateEarningsVerificationRequestRecordGUID. Each line in the record contains the Data
Element Name as described in the Implementation Guide followed by a colon (:) followed by the
value given to that element name. The value must be contained all on a single line. If the data
element value is null, it must not be in the ASCII file.

7.2.1.1.7 ASCII File Specification — Earnings Verification PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections to it. The
first section describes the SOAP Headers that must be placed on the SOAP message. The second
section describes the Pull Collection Query. These are discussed below. Any line that is empty
or has a # character as the first character in it is ignored. The # allows comments to be placed in
the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts
described in section 4.3.2-State Pull.

e Regular Pull

SIDESY

106

#FSOAF HeaderWalues
From:

To:

FullCollection:

#FPull Guen Walues

#Filandatary field, same as Fromwalue
StatePostalCode:

e Pull By State Soap Transaction Number

#50AP Headeralues

From:

To:

PullCollection:
StateS0APTransactionMumber:

#FPull Query Values
#mandatory field, same as Fromyvalue
StatePostalCode:

#optionalfields based an PullCallectionvalue
StateS0OAPTransactionkumber:

e Pull By Date

#S0AP Headeralues

From:

To:

PullCollection:
StateS0APTransactionMumber:

#FPull CGuery Values
#mandatory field, same as Fromyalue
StatePostalCode:

Foptionalfields hased on PullCollectionwalue
StateS0APTransactionMumber:
BrokerRecordEffectiveDateFram:
BrokerRecordEffectiveDateTo:

If specified in the configuration file, the State Model Connector will return the responses in an
ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 37 - Broker Response to Request (Regular Pull)

Header Element Definition Example
To The Unique ID of the state that requested the uT
Pull
From The Unique ID of the employer or TPA from BR000000001
which these response records originated

SIDESY

107

Header Element Definition Example

StateSOAPTransactionNu | The unique number assigned to this file by the | 3565
mber Broker

MessageCode The acknowledgement code applied to the 1
message that indicates success or failure of the
entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The
format will be the same as described in the post, where there is an element name followed by a
colon (:) followed by the value being returned. A complete file specification containing all data
elements is not provided as the returned file is dynamic, based upon the business rules and
request indicator values. SIDES participants should rely on the standard format to ensure all

response values are ingested by the back-end system. The following is an example Response file.

#SOAP Headers

To:ST

From:BR999999999
StateSOAPTransactionNumber: 9217
MessageCode: 1

#Earnings Verification Response
StateEarningsVerificationRequestRecordGUID:AAA51000000000000000000000000001
BrokerRecordTransactionNumber:5445
RequestingStateAbbreviation:ST
UIOfficeName:0ffice Name
StateEmployerAccountNbr:1234567890
FEIN:123456789

CorrectedFEIN:987654321

EmployerName : ACME

CorrectedEmployerName:Fly By Night
SSN:211111111
ClaimantNameWorkedAsForEmployer:John Q Public
NumberofWeeksRequested:5
EarningsVerificationWeekBeginDate:2010-08-01
EarningsVerificationWeekEndDate:2010-09-04
ClaimantEmployerWorkRelationshipCode:John Q Public
EmployerEarningsCode:1
FirstDayWorkedinPeriod:2010-08-01
StillWorkingCode:2

LastDayWorked:2010-09-04
EmployerSepReasonCode:1

SIDESY

108

EarningsVerificationResponseComment:This employee was let go during the time
period

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-01
WeekEndDate:2010-08-07
HoursWorked:15:00
AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-08
WeekEndDate:2010-08-14
HoursWorked:15:00
AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-15
WeekEndDate:2010-08-21
HoursWorked:15:00
AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-22
WeekEndDate:2010-08-28
HoursWorked:101:00
AmountEarnedForWeek:500.00

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-29
WeekEndDate:2010-09-04

HoursWorked:5:00
AmountEarnedForWeek:500.00

PreparerTypeCode:T

PreparerCompanyName:ABC TPA
PreparerTelephoneNumberPlusExt:5555555556
PreparerContactName:Mrs Sue Herman
PreparerTitle:Claims Administrator
PreparerFaxNbr:5555555557
PreparerEmailAddress:sue.herman@abctpa.com
EarningsVerificationSourceCode:9
BrokerRecordEffectiveDate:2011-04-08T15:51:50-0400

#Earnings Verification Response
StateEarningsVerificationRequestRecordGUID:AAA52000000000000000000000000002
BrokerRecordTransactionNumber:5446
RequestingStateAbbreviation:ST
UIOfficeName:0ffice Name
StateEmployerAccountNbr:1234567890
FEIN:123456789

CorrectedFEIN:987654321

EmployerName : ACME

CorrectedEmployerName:Fly By Night
SSN:211121314
ClaimantNameWorkedAsForEmployer:John Q Public
NumberofWeeksRequested:5

SIDESY 109

EarningsVerificationWeekBeginDate:2010-08-01
EarningsVerificationWeekEndDate:2010-09-04
ClaimantEmployerWorkRelationshipCode:John Q Public

EmployerEarningsCode:1

FirstDayWorkedinPeriod:2010-08-01

StillWorkingCode:2

LastDayWorked:2010-09-04

EmployerSepReasonCode:1

EarningsVerificationResponseComment:This employee was let go during the time
period

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-01
WeekEndDate:2010-08-07
HoursWorked:15:00
AmountEarnedForWeek:500.00
VacationAmountPaidForWeek:40.00
HolidayAmountPaidForWeek:60.00
HolidayPaidDate:2010-08-07
WagesInLieuAmountPaidForWeek:80.00
WagesInLieuPaidDate:2010-08-07

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-08
WeekEndDate:2010-08-14
HoursWorked:15:00
AmountEarnedForWeek:500.00
VacationAmountPaidForWeek:40.00
HolidayAmountPaidForWeek:60.00
HolidayPaidDate:2010-08-14
WagesInLieuAmountPaidForWeek:80.00
WagesInLieuPaidDate:2010-08-14

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-15
WeekEndDate:2010-08-21
HoursWorked:15:00
AmountEarnedForWeek:500.00
VacationAmountPaidForWeek:40.00
HolidayAmountPaidForWeek:60.00
HolidayPaidDate:2010-08-21
WagesInLieuAmountPaidForWeek:80.00
WagesInLieuPaidDate:2010-08-21

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-22
WeekEndDate:2010-08-28
HoursWorked:101:00
AmountEarnedForWeek:500.00
VacationAmountPaidForWeek:40.00
HolidayAmountPaidForWeek:60.00
HolidayPaidDate:2010-08-28
WagesInLieuAmountPaidForWeek:80.00
WagesInLieuPaidDate:2010-08-28

SIDESY 110

#Weekly Earnings Verification occurence
WeekBeginDate:2010-08-29
WeekEndDate:2010-09-04

HoursWorked:5:00
AmountEarnedForWeek:500.00
VacationAmountPaidForWeek:40.00
HolidayAmountPaidForWeek:60.00
HolidayPaidDate:2010-09-04
WagesInLieuAmountPaidForWeek:80.00
WagesInLieuPaidDate:2010-09-04

PreparerTypeCode:T

PreparerCompanyName : ABC TPA
PreparerTelephoneNumberPlusExt:5555555556
PreparerContactName:Mrs Sue Herman
PreparerTitle:Claims Administrator
PreparerFaxNbr:5555555557
PreparerEmailAddress:sue.herman@abctpa.com
EarningsVerificationSourceCode:9
BrokerRecordEffectiveDate:2011-04-08T15:51:52-0400

7.2.1.2 Log Files — POST
7.2.1.2.1 DEBUG log file

This log file is the main debugging log file for the whole application for a given run. It contains
all debug output logged in the system during that run. If the system were to fail unexpectedly,
this log file will contain the most up to date status and will most likely indicate where the system
failed. It also includes all the data that is written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration
parameter. The naming scheme is as follows:

POST {SI|EV} DEBUG date time.log
For example:

POST EV_DEBUG 2011-04-08 15-23-18-292.log

7.2.1.2.2 BRPT log file

This log file shows the results from the call to the BRPT on the request files submitted for a
given run. It will indicate all the records that had a problem in them and were thus stripped for
the request file being sent. It is the responsibility of the State to correct these errors and
retransmit these requests to the Central Broker.

Here is an example of the contents of a BRPT log file:

#Failed Records
Record GUID Failure:30000000000000000000000000004001

SIDESY

111

Number of errors detected:2

#Errors

Error Number:1

Error Code:111

Error Message:Business Rule violation - There must be a value (Date) for
WagesNeededBeginDate if WagesWeeksNeededCode = WO |WW

Error Number:2

Error Code:102

Error Message:Business Rule violation - Two or more UniqueAttachmentIDs
assigned to a specific Separation Information Request are the same - they
must be unique.

The log file is placed into the directory specified by the BrptLogFilePath configuration
parameter. The naming scheme is as follows:

POST {SI|EV} BRPT {to} {from} date time guid.log
For example:

POST EV_BRPT BR999999999 ST 2011-04-08 15-23-18-
292 01234567890123456789012345678901.10g

7.2.1.2.3 RESULTS log file
This log file shows the acknowledgement from the Central Broker for a given run.

Here is an example of the contents of a RESULTS log file.

#SOAP Headers in Acknowledgement

To:ST
StateRequestFileGUID:01234567890123456789012345678901
From:Broker

MessageCode:1

#Acknowledgement

File GUID:01234567890123456789012345678901

Number of Request Records Received:1l

Number of Request Records Received in Error:0

Date Started Received:2011-04-09T10:07:03.257-04:00
Date Finished Receiving:2011-04-09T10:07:03.601-04:00

The log file is placed into the directory specified by the ResultsLogFilePath configuration
parameter. The naming scheme is as follows:

POST {SI|EV} RESULTS {to} {from} date time guid.log
For example:

POST ST RESULTS BR999999999 ST 2011-04-08 15-23-18-
292 01234567890123456789012345678901.10g

SIDESY 112

7.2.1.2.4 PIN log file

This log file shows the created PIN that was used in the call to the SEW. The PIN log file will
only exist if a pin was created. If the config file had the createPin config parameter set to false
or there was a problem with the SOAP headers (i.e. the To: header specified was not a 9 digit
FEIN) the PIN log file will not be created. If you expect to see a PIN log file but one was not
created, view the debug file for that run which will give more detailed information.

Here is an example of the contents of a PIN log file.

PIN:20110409120056488

The log file is placed into the directory specified by the PINLogFilePath configuration
parameter. The naming scheme is as follows:

POST {SI|EV} PIN {to} {from} date time guid.log
For example:

POST ST _PIN BR999999999 ST 2011-04-08 15-23-18-
292 01234567890123456789012345678901.109

7.2.1.3 Log Files — PULL
7.2.1.3.1 DEBUG log file

This is the main debugging log file for the whole application for a given run. It contains all
debug output logged in the system during that run. If the system were to fail unexpectedly, this
log file will contain the most up to date status and will most likely indicate where the system
failed. It also includes all the data written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration
parameter. The naming scheme is as follows:

PULL {SI|EV} DEBUG date time.log
For example:

PULL_EV_DEBUG_2011-04-08 15-46-12-035.10g

7.2.1.3.2 BRPT log file

This log file shows the results from the call to the BRPT on the response files returned by the
Central Broker for a given run. If there are any records in this file, then the State Model

SIDESY

113

Connector will return a Message Code of 2 back to the Central Broker indicating a failure.
This file will then be pulled again on its next Pull call.

Here is an example of the contents of a BRPT log file:

#Failed Records

Record GUID Failure:30000000000000000000000000004000
Number of errors detected: 1

#Errors

Error Number:1

Error Code:201

Error Message:XSD validation violation

The log file is placed into the directory specified by the BrptLogFilePath configuration
parameter. The naming scheme is as follows:

PULL {SI|EV} BRPT {to} {from} date time PullCollection.log
For example:

PULL_EV_BRPT Broker ST 2011-04-08 15-46-12-035 1.log

7.2.1.3.3 RESULTS log file

This log file shows the results of the Pull call from the Central Broker for a given run. It will
contain the State Separation Responses in XML format. If the pullAllFiles config file parameter
IS set to true, then this file will contain all of the SOAP Headers and Response Payloads the
Model Connector received from the Central Broker.

Here is an example of the contents of a RESULTS log file.

#SOAP Headers

To:ST

From:BR999999999
StateSOAPTransactionNumber:143104
MessageCode:1

#Response Payload
<StateSeparationResponseCollection xmlns:ns2="http://docs.ocasis-
open.org/wss/2004/01/0asis-200401-wss-ws -utility-1.0.xsd"

xmlns="https:// REDACTED /schemas">

<StateSeparationResponse>

<StateRequestRecordGUID>30000000000000000000000000004004</StateRequestR

ecordGUID>

<BrokerRecordTransactionNumber>2013890</BrokerRecordTransactionNumber>
<SSN>560348478</SSN>
<ClaimEffectiveDate>2007-06-04</ClaimEffectiveDate>
<ClaimNumber>388620</ClaimNumber>

SIDESY.

114

<StateEmployerAccountNbr>0065560</StateEmployerAccountNbr>
<EmployerReportedClaimantFirstDayofWork>2007-10-
11</EmployerReportedClaimantFirstDayofWork>
<EmployerReportedClaimantLastDayofWork>2007-10-
14</EmployerReportedClaimantLastDayofWork>
<EffectiveSeparationDate>2007-10-14</EffectiveSeparationDate>
<TotalEarnedWagesNeededInd>3</TotalEarnedWagesNeededInd>
<TotalWeeksWorkedNeededInd>3</TotalWeeksWorkedNeededInd>
<AverageWeeklyWage>125.00</AverageWeeklyWage>
<EmployerSepReasonCode>4</EmployerSepReasonCode>
<ReturnToWorkInd>Y</ReturnToWorkInd>
<ReturnToWorkDate>2010-01-01</ReturnToWorkDate>
<WorkingAllAvailableHoursInd>Y</WorkingAllAvailableHoursInd>
<Remuneration>
<RemunerationTypeCode>4</RemunerationTypeCode>
<RemunerationAmountPerPeriod>999.99</RemunerationAmountPerPeriod>

<RemunerationPeriodFrequencyCode>M</RemunerationPeriodFrequencyCode>
<DateRemunerationIssued>2007-10-15</DateRemunerationIssued>
<EmployerAllocationInd>Y</EmployerAllocationInd>
<AllocationBeginDate>2007-10-15</AllocationBeginDate>
<AllocationEndDate>2007-10-22</AllocationEndDate>
</Remuneration>

<AverageNumberofHoursWorkedperWeek>40</AverageNumberofHoursWorkedperWeek>
<MandatoryRetirementInd>N</MandatoryRetirementInd>
<MandatoryPension>N</MandatoryPension>

<ContributoryorNotContributoryClaimantInd>Y</ContributoryorNotContributoryCla
imantInd>

<ClaimantPensionContributionPercent>100</ClaimantPensionContributionPercent>

<EmployerSepReasonComments>EmployerSepReasonComments</EmployerSepReasonCommen
ts>
<DischargeReasonCode>4</DischargeReasonCode>
<FinalIncidentReason>FinalIncidentReason</FinalIncidentReason>
<FinalIncidentDate>2007-10-13</FinalIncidentDate>
<ViolateCompanyPolicyInd>Y</ViolateCompanyPolicyInd>
<DischargePolicyAwareInd>Y</DischargePolicyAwareInd>

<DischargePolicyAwareExplanationCode>W</DischargePolicyAwareExplanationCode>
<PriorIncidentOccurrence>
<PriorIncidentDate>2007-10-10</PriorIncidentDate>
<PriorIncidentReason>None</PriorIncidentReason>
<PriorIncidentWarningInd>Y</PriorIncidentWarningInd>
<PriorIncidentWarningDate>2007-10-10</PriorIncidentWarningDate>

<PriorIncidentWarningDescription>Verbal</PriorIncidentWarningDescription>
</PriorIncidentOccurrence>
<WhoDischargedName>Brian Wilson</WhoDischargedName>
<WhoDischargedTitle>Customer Service Associate</WhoDischargedTitle>
<VoluntarySepReasonCode>4</VoluntarySepReasonCode>
<HiringAgreementChangesCode>4</HiringAgreementChangesCode>

SIDESY.

115

<HiringAgreementChangesComments>HiringAgreementChangesComments</HiringAgreeme
ntChangesComments>
<ClaimantActionsToAvoidQuitInd>Y</ClaimantActionsToAvoidQuitInd>
<ActionTakenComments>ActionTakenComments</ActionTakenComments>
<ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>
<PreparerTypeCode>E</PreparerTypeCode>
<PreparerCompanyName>J C Penny</PreparerCompanyName>

<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlusExt>
<PreparerContactName>Ed A Jones</PreparerContactName>
<PreparerTitle>Project Manager</PreparerTitle>
<PreparerFaxNbr>9725312108</PreparerFaxNbr>
<PreparerEmailAddress>edjones@jcpenneytest.com</PreparerEmailAddress>
<BrokerRecordEffectiveDate>2011-04-09T12:24:47.000-
04:00</BrokerRecordEffectiveDate>
</StateSeparationResponse>
<StateSeparationResponse>

<StateRequestRecordGUID>30000000000000000000000000004003</StateRequestRecordG
UID>

<BrokerRecordTransactionNumber>2013889</BrokerRecordTransactionNumber>
<SSN>560348477</SSN>
<ClaimEffectiveDate>2007-06-04</ClaimEffectiveDate>
<ClaimNumber>388620</ClaimNumber>
<StateEmployerAccountNbr>0065560</StateEmployerAccountNbr>
<CorrectedEmployerName>J C Penny</CorrectedEmployerName>

<CorrectedStateEmployerAccountNbr>0123456789</CorrectedStateEmployerAccountNb
r>
<CorrectedFEIN>987654321</CorrectedFEIN>
<OtherSSN>660348477</0therSSN>
<ClaimantNameWorkedAsForEmployer>Andy
Wilson</ClaimantNameWorkedAsForEmployer>
<ClaimantJobTitle>Customer Service Associate</ClaimantJobTitle>
<SeasonalEmploymentInd>N</SeasonalEmploymentInd>
<EmployerReportedClaimantFirstDayofWork>2007-10-
11</EmployerReportedClaimantFirstDayofWork>
<EmployerReportedClaimantLastDayofWork>2007-10-
l4</EmployerReportedClaimantLastDayofWork>
<EffectiveSeparationDate>2007-10-14</EffectiveSeparationDate>
<TotalEarnedWagesNeededInd>3</TotalEarnedWagesNeededInd>
<TotalWeeksWorkedNeededInd>3</TotalWeeksWorkedNeededInd>
<AverageWeeklyWage>125.00</AverageWeeklyWage>
<EmployerSepReasonCode>3</EmployerSepReasonCode>
<ReturnToWorkInd>N</ReturnToWorkInd>
<WorkingAllAvailableHoursInd>N</WorkingAllAvailableHoursInd>

<NotWorkingAvailableHoursReason>NotWorkingAvailableHoursReason</NotWorkingAva
ilableHoursReason>
<LaborDisputeTypeInd>L</LaborDisputeTypeInd>
<Remuneration>
<RemunerationTypeCode>3</RemunerationTypeCode>
<RemunerationAmountPerPeriod>999.99</RemunerationAmountPerPeriod>

SIDESY.

116

<RemunerationPeriodFrequencyCode>B</RemunerationPeriodFrequencyCode>
<DateRemunerationIssued>2007-10-15</DateRemunerationIssued>
<EmployerAllocationInd>N</EmployerAllocationInd>
<AllocationBeginDate>2007-10-15</AllocationBeginDate>
<AllocationEndDate>2007-10-22</AllocationEndDate>
</Remuneration>

<AverageNumberofHoursWorkedperWeek>40</AverageNumberofHoursWorkedperieek>
<MandatoryRetirementInd>N</MandatoryRetirementInd>
<MandatoryPension>N</MandatoryPension>

<ContributoryorNotContributoryClaimantInd>N</ContributoryorNotContributoryCla
imantInd>

<ClaimantPensionContributionPercent>100</ClaimantPensionContributionPercent>
<DischargeReasonCode>3</DischargeReasonCode>
<FinalIncidentReason>FinalIncidentReason</FinallIncidentReason>
<FinalIncidentDate>2007-10-13</FinallIncidentDate>
<ViolateCompanyPolicyInd>N</ViolateCompanyPolicyInd>
<DischargePolicyAwareInd>N</DischargePolicyAwareInd>

<DischargePolicyAwareExplanationCode>V</DischargePolicyAwareExplanationCode>
<PriorIncidentOccurrence>
<PriorIncidentDate>2007-10-10</PriorIncidentDate>
<PriorIncidentReason>None</PriorIncidentReason>
<PriorIncidentWarningInd>Y</PriorIncidentWarningInd>
<PriorIncidentWarningDate>2007-10-10</PriorIncidentWarningDate>

<PriorIncidentWarningDescription>Verbal</PriorIncidentWarningDescription>
</PriorIncidentOccurrence>
<WhoDischargedName>Andy Wilson</WhoDischargedName>
<WhoDischargedTitle>Customer Service Associate</WhoDischargedTitle>
<VoluntarySepReasonCode>3</VoluntarySepReasonCode>
<HiringAgreementChangesCode>3</HiringAgreementChangesCode>

<HiringAgreementChangesComments>HiringAgreementChangesComments</HiringAgreeme
ntChangesComments>
<ClaimantActionsToAvoidQuitInd>N</ClaimantActionsToAvoidQuitInd>
<ContinuingWorkAvailableInd>N</ContinuingWorkAvailableInd>
<PreparerTypeCode>T</PreparerTypeCode>
<PreparerCompanyName>J C Penny</PreparerCompanyName>

<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlusExt>
<PreparerContactName>Ed A Jones</PreparerContactName>
<PreparerTitle>Project Manager</PreparerTitle>
<PreparerFaxNbr>9725312108</PreparerFaxNbr>
<PreparerEmailAddress>edjones@jcpenneytest.com</PreparerEmailAddress>
<BrokerRecordEffectiveDate>2011-04-09T12:24:44.000-
04:00</BrokerRecordEffectiveDate>
</StateSeparationResponse>
<StateSeparationResponse>

<StateRequestRecordGUID>30000000000000000000000000004005</StateRequestRecordG
UID>

SIDESY.

117

<BrokerRecordTransactionNumber>2013891</BrokerRecordTransactionNumber>
<SSN>560348479</SSN>
<ClaimEffectiveDate>2007-06-04</ClaimEffectiveDate>
<ClaimNumber>378621</ClaimNumber>
<StateEmployerAccountNbr>0065560</StateEmployerAccountNbr>
<CorrectedEmployerName>J C Penny</CorrectedEmployerName>

<CorrectedStateEmployerAccountNbr>0123456789</CorrectedStateEmployerAccountNb
r>
<CorrectedFEIN>987654321</CorrectedFEIN>
<OtherSSN>660348479</0therSSN>
<ClaimantNameWorkedAsForEmployer>Charlie
Wilson</ClaimantNameWorkedAsForEmployer>
<ClaimantJobTitle>Customer Service Associate</ClaimantJobTitle>
<SeasonalEmploymentInd>Y</SeasonalEmploymentInd>
<TotalEarnedWagesNeededInd>2</TotalEarnedWagesNeededInd>
<TotalWeeksWorkedNeededInd>2</TotalWeeksWorkedNeededInd>
<AverageWeeklyWage>125.00</AverageWeeklyWage>
<EmployerSepReasonCode>5</EmployerSepReasonCode>
<ReturnToWorkInd>N</ReturnToWorkInd>
<ReturnToWorkDate>2010-01-01</ReturnToWorkDate>
<WorkingAllAvailableHoursInd>Y</WorkingAllAvailableHoursInd>
<Remuneration>
<RemunerationTypeCode>5</RemunerationTypeCode>
<RemunerationAmountPerPeriod>999.99</RemunerationAmountPerPeriod>

<RemunerationPeriodFrequencyCode>W</RemunerationPeriodFrequencyCode>
<DateRemunerationIssued>2007-10-15</DateRemunerationIssued>
<EmployerAllocationInd>Y</EmployerAllocationInd>
<AllocationBeginDate>2007-10-15</AllocationBeginDate>
<AllocationEndDate>2007-10-22</AllocationEndDate>
</Remuneration>

<AverageNumberofHoursWorkedperWeek>40</AverageNumberofHoursWorkedperWeek>
<MandatoryPension>N</MandatoryPension>

<ContributoryorNotContributoryClaimantInd>Y</ContributoryorNotContributoryCla
imantInd>

<ClaimantPensionContributionPercent>100</ClaimantPensionContributionPercent>

<EmployerSepReasonComments>EmployerSepReasonComments</EmployerSepReasonCommen
ts>
<DischargeReasonCode>5</DischargeReasonCode>
<FinalIncidentReason>FinalIncidentReason</FinalIncidentReason>
<FinalIncidentDate>2007-10-22</FinallIncidentDate>
<ViolateCompanyPolicyInd>N</ViolateCompanyPolicyInd>

<DischargePolicyAwareExplanationCode>W</DischargePolicyAwareExplanationCode>
<WhoDischargedName>Charlie Wilson</WhoDischargedName>
<WhoDischargedTitle>Customer Service Associate</WhoDischargedTitle>
<VoluntarySepReasonCode>5</VoluntarySepReasonCode>
<HiringAgreementChangesCode>5</HiringAgreementChangesCode>

SIDESY.

118

<HiringAgreementChangesComments>HiringAgreementChangesComments</HiringAgreeme
ntChangesComments>
<ClaimantActionsToAvoidQuitInd>Y</ClaimantActionsToAvoidQuitInd>
<ActionTakenComments>ActionTakenComments</ActionTakenComments>
<ContinuingWorkAvailableInd>Y</ContinuingWorkAvailableInd>
<VoluntarySepReasonComments>The claimant quit without giving JCPenney
a reason.</VoluntarySepReasonComments>
<PreparerTypeCode>E</PreparerTypeCode>
<PreparerCompanyName>J C Penny</PreparerCompanyName>

<PreparerTelephoneNumberPlusExt>9724312108</PreparerTelephoneNumberPlusExt>
<PreparerContactName>Ed A Jones</PreparerContactName>
<PreparerTitle>Project Manager</PreparerTitle>
<PreparerFaxNbr>9725312108</PreparerFaxNbr>
<PreparerEmailAddress>edjones@jcpenneytest.com</PreparerEmailAddress>
<BrokerRecordEffectiveDate>2011-04-09T12:24:55.000-

04:00</BrokerRecordEffectiveDate>

</StateSeparationResponse>
</StateSeparationResponseCollection>

#SOAP Headers

To:ST

From:Broker
StateSOAPTransactionNumber:143105
MessageCode: 2

#Response Payload

<StateSeparationResponseCollection xmlns:ns2="http://docs.ocasis-
open.org/wss/2004/01/0asis-200401-wss-ws -utility-1.0.xsd"

xmlns="https:// REDACTED /schemas"/>

The log file is placed into the directory specified by the ResultsLogFilePath configuration
parameter. The naming scheme is as follows:

PULL {SI|EV} RESULTS {to} {from} date time PullCollection.log
For example:

PULL_ST RESULTS Broker ST 2011-04-08 15-46-12-035 1.log

7.2.1.4 Setup Employer Model Connector

To begin using the Employer Model Connector, the employer or TPA must first download the
software from the sides.itsc.org website.

There are two options for download of the Employer Model Connector.

The first option is the ‘Black Box” approach. This download contains only the executable file(s)
and any support files and/or directories required to run the employer Model Connector. The data

SIDESY 119

directory contains some test files used to construct the Model Connector. The readme.txt file
indicates how to execute the application, which is discussed below.

Option 2 is the full Employer Model Connector project. This download contains a directory that
has the executable files and the source files. The Employer Model Connector project contains all
files required to be loaded into the Eclipse IDE or Visual Studio 2010 with minimal adjustments
required.

To learn more about the setup and running of the particular technology, please see the section
below that corresponds to the technology desired.

7.2.1.4.1 Employer Requirements for ASCII file

All of the employer/TPA requirements detailed in Part B of this document are still applicable for

the ASCII file. In particular, when creating the ASCII file, you must make sure that it falls under

the 8 megabyte limit or it will be rejected by the Central Broker. Attachments are handled the
same way within the ASCII file as they are within the XML the software expects attachments to
be encoded into the ASCII file. The one minor difference between the XML and ASCII file is
that when placing an encoded file into the ASCII file it must be a continuous string with no
newline characters in it (must not be chunked). If the ASCII file contains newlines characters in
the encoded attachment, the data file reader will not work correctly.

7.2.1.4.2 Response Input

Input files are specified on the command line used to execute the Model Connector. See
examples below.

7.2.1.4.3 Request Output

The SIDES Model Connector can provide requests in ASCII format, PDF, or both ASCII and
PDF. In all cases, the requests are available in XML format. ASCII and PDF output files are
specified in the runtime configuration parameters. The XML request output file is contained in
the results Log file, whose path is specified in the runtime configuration parameters.

7.2.1.4.4 ASCII File Specification — Separation Information Post

The ASCII file ingested by the Model Connector on the Post has two main sections. Section 1
(SOAP Headers) describes the SOAP Headers that must be placed on the SOAP message. The
second section (Response) describes the actual response records. These are discussed further
below. Any line in the ASCII specification that is empty or contains a # character as the first
character is ignored. The # allows comments to be placed in the file.

SIDESY

120

#30AF Headers
To:

From:

FileCuid:

#Response

StateReguestRecord 3D
BroketFecordTrans actiontlumber:
SEH:

ClaimBffectivellate:

Claimblamber:

StateEmployerd coountH by
CotrectedEmployert ame:
Cotrected3tateEmployerd coountt by
CotrectedFEIN:

Other33H:

Claithanth ameW orke dA sF otEmployer:
ClaimantlobTitle:
SeasonalBEmploymentlnd:

EmployetReportedClaimantFirstDayofW ol

EmployetReportedClaimantl astDayofWW otk
EffectiveleparationDate:

TotalEatne dWagesH eededlnd:

TotalEatne dWages:
TotalWWeeksWorked eededlnd:
TotalWeeksWorked:

WagesHarne A fterClaimBife ctiveDate:

MumbetOfH oursWorke dA frerClaimBEffe ctiveDate:

SoverageWeelklyWage:
EmployetlepReazonCode:

ReturnT o'Workdnd:

ReturnT o'WorkDate:
WorkingAlAvailableH ourslnd:
NotWorking s vailableHoursFeas on
LabotDisputeTypelnd:

HRemuneration - Repeatable
RennerationTypeCode:
Renneration A mountP erPeriod:
RenunerationP erio dFrequencyCode:
DateRemunerationlssued:
Employerdlocationdnd:
AllocationBeginlate:
AllocationEndDate:

AverageNumberofH oursWorke dper'Week:
Ilandat oryRetirementlnd:
Ilandat oryP ension:

Contribuatoryor] otC ontribat oreClaimantInd:

ClaimantP ensionC ontribnationP erc ent:
PensionC onuments:

EmployerdepReas onC omments:
DischargeReasonCode:
FinallnecidentReas o

FinallneidentDate:

WiolateC omypanyP olicyTnd:
DischargePolicyAwarelnd:
DischargePolicyAwareExplanationCode:

SIDESYS

Response
#1

Soap
Headers

121

H#PriotlneidentD ecoutrence - Repeatable
PriotIncidentD ate:
PriotIncidentReazon:
PriotTneident™Warninglnd:
PriotInecidentWarningDate:
PriotlncidentWarnin gD escription:

WhoDizchargedN ame:
WhoDizchargedTitle:
DizschatgeReazonC ommernts:
VoluntaryZepReasonCode:

HitingA greementChange sCode:
Hiring & greementChange sC onanent s:
Claimantd ctionsT odvoidQuitlnd:

2 ctionT aleenC omments:

Contitmin gWotkd wailablelnd:
VoluntaryZepReasonCominents:

EittactumentOccurence - Fepeatable
UnicpueAttachinentld:
DescriptionofAttachmentCode:
TypeofDocument:

AttachmentSize:

AttachmentData:

PreparetTypeCode:

PreparesC omp atytd atme:
PreparerTelephonelumberPlusExd:
PreparerContact!d ame:
PreparesTitle:

PreparetF axthy:

PreparetBmail® ddress:
AmendedResponse:
AmendedResponseDescription:

End of
Response

#1

The SOAP headers section of the ASCII file contains the routing information discussed in
section 4.3-SOAP Custom Headers. It must contain the following information:

Table 38 - Employer Post to Broker

Header Element | Required Definition Example

To Y The Unique ID of the State to which the | UT
message is intended

From Y The Unique ID of the employer/TPA BR000000003
where the message originated

FileGUID Y The employer-generated GUID applied A42A1FBDAC9549
to this message that can uniquely identify | AC7D8D3F45E404

SIDESV

122

Header Element | Required Definition Example

this file 0319

Size is 32 hexadecimal digits

The Response section of the ASCII file contains the actual response record or records. There can
be multiple responses records in a file. Each request record must start with the element name
StateRequestRecordGUID. Within the record itself, there can also be repeatable attachment
sections (up to 10 attachments according to the Separation Information specification), Prior
Incidents or Remunerations. The repeatable section must contain all of the information on a
particular section before moving on to the next repeatable element. Each line in the record
contains the Data Element Name as described in the Implementation Guide followed by a colon
(:) followed by the value given to that element name. The value must be contained all on a
single line. If the data element value is null, it must not be in the ASCII file.

7.2.1.4.5 ASCII File Specification — Separation Information PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections. Section 1
describes the SOAP Headers, which must be placed on the SOAP message. Section 2 describes
the Pull Collection Query. These are discussed below. Any line that is empty or has a #
character as the first character in it is ignored. The # allows comments to be placed in the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts
described in section 4.3.2-State Pull.

e Regular Pull

HSO0AP Header Values
From:

To:

FPullCollection:

ffipull cuery wvalues

ffrandatory field, sSame a2 From walue
TnigquelIl:

e Pull By EmployerTPA Soap Transaction Number

SIDESY

123

HS0LP Header Values

From:

To:

PullCollection:

Employer TPASOLAPTransact ioniunber :

fpull cuery wvaluess
ffmandatory field, same a= From value
TnicquelID:

foptional fields based on PullCollection wvalue
Employer TPASOLAPTransact ioniunber :

e Pull By Date

HI0OLP Header VWalues

From:

To:

FPullCollection:

Employer TPAZOQLP Transact ionkunlber :

Hpull cuery walues
fwandatory field, same a= From value
UnicueID:

#optional fields hased on PullCollection walue
Employer TPASOLPTransact ionMumber :
BrokerRecordEffectivelbateFrom:
ErokerBecordEffectivelbateTo:

If specified in the configuration file, the Employer Model Connector will return the requests in
an ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 39 - Broker Response to Request (Regular Pull)

Header Element Definition Example

To The Unique ID of the employer/TPA that BR000000003
requested the Pull

From The Unique 1D of the state from which these uT
request records originated

EmployerTPASOAPTrans | The unique number assigned to this file by the | 3565
actionNumber Broker

MessageCode The acknowledgement code applied to the 1

SIDESY

124

Header Element Definition Example

message that indicates success or failure of the
entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The
format will be the same as described in the post, where there is an element name followed by a
colon (:) followed by the value being returned. A complete file specification containing all data
elements is not provided as the returned file is dynamic, based upon the business rules. SIDES
participants should rely on the standard format to ensure all response values are ingested by the
back-end system. The following is an example Request file.

#Separation Request
StateRequestRecordGUID:ccc5915556584c3fad5ef6d21de9eb23
SSN:000195788
ClaimEffectiveDate:2010-07-11
StateEmployerAccountNbr:129054
EmployerName:H E BUTT GROCERY COMPANY
FEIN:740537175

TypeofEmployerCode: 2

TypeofClaimCode:1
BenefitYearBeginDate:2010-07-11
RequestingStateAbbreviation:TX
UIOfficeName:TEXAS WORKFORCE COMMISSIO
UIOfficePhone:8888766107
UIOfficeFax:5123222815
ClaimantLastName:HUGHES
ClaimantFirstName:BRIAN
ClaimantMiddleInitial:K
ClaimantJobTitle:AVIATION FULLER
ClaimantReportedFirstDayofWork:2008-10-13
ClaimantReportedLastDayofWork:2010-06-29
WagesWeeksNeededCode :NA
ClaimantSepReasonCode: 6

RequestDate:2010-08-18

ResponseDueDate:2010-09-01

FormNumber:610.0
BrokerRecordTransactionNumber:2041311
BrokerRecordEffectiveDate:2011-04-14T10:40:42-0400

#Separation Request
StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df
SSN:000989494

ClaimEffectiveDate:2008-09-28

ClaimNumber:0

StateEmployerAccountNbr:342424001

EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO

SIDESYA 125

FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1
BenefitYearBeginDate:2008-09-28
RequestingStateAbbreviation:CO
UIOfficeName:CO CDLE
UIOfficePhone:3033189055
UIOfficeFax:3033189014

ClaimantLastName :WHEELOCK
ClaimantFirstName:PHILIPPE
ClaimantMiddleInitial:M
ClaimantJobTitle:SKI PATROL
ClaimantReportedFirstDayofWork:2005-11-25
ClaimantReportedLastDayofWork:2008-04-10
WagesWeeksNeededCode : NA
ClaimantSepReasonCode:1

#Attachment occurence

UniqueAttachmentId:1

DescriptionofAttachmentCode:3

TypeofDocument :NOTICE AND REQUEST FOR SEPARATION INFO

ActionableAttachment:3

AttachmentSize:53104
AttachmentData:elxydGYxXGFkZWZsYWSNMTAYNVxhbnNpXGFuc21jcGexMjUyXHVIMVxhZGVmZ j
BcZGVmZjBccQ==

RequestDate:2008-09-28

ResponseDueDate:2008-10-13

FormNumber :UIB-290e
BrokerRecordTransactionNumber:2041294
BrokerRecordEffectiveDate:2011-04-13T17:31:52-0400

7.2.1.4.6 ASCII File Specification — Earnings Verification POST

The ASCII file ingested by the Model Connector on the Post has two main sections to it. Section
1 describes the SOAP Headers that must be placed on the SOAP message. Section 2 describes
the actual response record(s). These are discussed below. Any line that is empty or has a #
character as the first character in it is ignored. The # allows comments to be placed in the file.

SIDESY.

126

#30AP Headers
To:

From:
Filecuid:

#Response Record
GrateEarningsVerificationRequestRecordGUID:
ErokerRecordTransact ionNumber : ersponse
Fequestingltatelbbreviation: #1
TIofficelame:

GrateEmployericcountMNhr:

FEIN:

CorrectedFEIN:

Emp loyeriame :

CorrectedEmp loyerName:

==1rH

ClaiwmantNamwellorkedisForEmp loyer:
HNurherofllecksRegquested:
EarningsVerificationlleekBeginDate:
EarningsVerificationlleekEndDate:
ClaimantEmployerlorkRe lationshipCode:
EmployerEarningsCode:

FirstDaylWorkedinPeriod:

3tillWorkingCode:

LastDhavWorked:

EmployeriepReasonCode:
EarningsVerificationResponseCorment :

#WeeklyEarningsVerification (repeatakble]
WeekBeginDhate:

MeekEndDhate:

HoursWorked: :
bmountEarnedForieek:
EarningsPaidDate:
TipsimountEarnedForieek:
TipsPaidDate:
Commissionimount EarnedForieelk:
CommissionPaidlate:
BonhusimountEarnedForliesk:
BonusFPaidDate:
VacationbimountPaidForieek:
VacationPaidDate:
JickimountFPaidForieelk:
ZickPaidDate:
HolidavimountPaidForieek:
HolidayPaidDate:
ZGeverancelwmountPaidForileek:
ZeverancePaidlate:
WagesInLieunbmountPaidForilesk:
WagesInLieuPaidDbate:

PreparerTypeCode:
PreparerCompanyName:
PreparerTelephoneNumberP lusExt:
PreparerContactName:
FreparerTitle:

PreparerFaxNbr:
PreparerEmailiddress:
EarningsWVerification3ourceCode:

SIDESYS

Soap
Headers

End of
Response
#1

127

The first part of the ASCII file contains the SOAP headers. This is the routing information
discussed in section 4.3-SOAP Custom Headers. It must contain the following information:

Table 40 - Employer Post to Broker

Header Element | Required Definition Example

To Y The Unique ID of the state to which the | UT
message is intended

From Y The Unique ID of the employer/TPA BR000000003
where the message originated

FileGUID Y The employer-generated GUID applied A42A1FBDAC9549
to this message that can uniquely identify | AC7D8D3F45E404
this file 0319

Size is 32 hexadecimal digits

The second part of the ASCII file is the actual response record(s). There can be multiple
response records in a file. Each response record must begin with the element name
EmployerTPAEarningsVerificationRequestRecordGUID. Each line in the record contains the
Data Element Name as described in the Implementation Guide followed by a colon (:) followed
by the value given to that element name. The value must be contained all on a single line. If the
data element value is null, it must not be in the ASCII file.

7.2.1.4.7 ASCII File Specification — Earnings Verification PULL

The ASCII file ingested by the Model Connector on the Pull has two main sections to it. The
first section describes the SOAP Headers that must be placed on the SOAP message. The second
section describes the Pull Collection Query. These are discussed below. Any line that is empty
or has a # character as the first character in it is ignored. The # allows comments to be placed in

the file.

There are three PULL formats that will accomplish the same thing as their XML counterparts
described in section 4.3.2-State Pull.

e Regular Pull

SIDESY

128

H30LP Header Values
From:

To:

FPullCollection:

ffpull cuery wvaluess
fimandatory field, same as From walue
TnicueID:

e Pull By EmployerTPA Soap Transaction Number

HS0LP Header Values

From:

To:

FullCollection:
EmployerTPASOLPTransact ionMNumber :

fpull cuery wvaluess
ffmandatory field, same a= From value
TnicquelID:

H#optional fields based on PullCollection walue
EmployerTPASOLPTransact ionMNumber :

e Pull By Date

HI0OLP Header VWalues

From:

To:

FPullCollection:

Employer TPAZOQLP Transact ionkunlber :

Hpull cuery walues
fwandatory field, same a= From value
UnicuelID:

H#optional fields based on PullCollection walue
Employer TRPASOLPTransact ionMumber :
ErokerFecordEffectivelbateFrom:
BrokerRecordEffectivelbateTo:

If specified in the configuration file, the Employer Model Connector will return the request in an
ASCII format. The top of the file will contain the SOAP Headers in the response file.

Table 41 - Broker Response to Request (Regular Pull)

Header Element Definition Example
To The Unique ID of the employer/TPA that BR000000001
SIDESVs.

129

Header Element Definition Example

requested the Pull

From The Unique ID of the state from which these uT
request records originated

EmployerTPASOAPTrans | The unique number assigned to this file by the | 3565
actionNumber Broker

MessageCode The acknowledgement code applied to the 1
message that indicates success or failure of the
entire transmission. See 4.2.5 for further
information on Message Codes.

Size is one digit

After the SOAP headers, the ASCII file will contain all the records returned in the pull call. The
format will be the same as described in the post, where there is an element name followed by a
colon (:) followed by the value being returned. A complete file specification containing all data
elements is not provided as the returned file is dynamic, based upon the business rules and
request indicator values. SIDES participants should rely on the standard format to ensure all
response values are ingested by the back-end system. The following is an example Request file.

#Request Payload

#SOAP Headers

To:BR999999999

From:ST
EmployerTPASOAPTransactionNumber: 9551
MessageCode:1

#Earnings Verification Request
StateEarningsVerificationRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00cd
RequestingStateAbbreviation:ST
UIOfficeName:UI Office of ST
UIOfficePhone:2105551212
UIOfficeFax:2105551313
UIOfficeEmailAddress:test@nowhere.com
StateEmployerAccountNbr:0123456789
FEIN:999999999

EmployerName:Test Employer
SSN:000989496

ClaimantLastName:Doe
ClaimantFirstName:John
ClaimantMiddleInitial:M
ClaimantSuffix:Jr

SIDESY

130

NumberofWeeksRequested:5
EarningsVerificationWeekBeginDate:2010-01-03
EarningsVerificationWeekEndDate:2010-02-06
EarningsVerificationComments:Test of Earnings Verification Comments field.
RequestDate:2010-09-07

EarningsStatusCode:3

TipsStatusCode:1

CommissionStatusCode:1

BonusStatusCode: 3

VacationStatusCode:2

SickLeaveStatusCode:3

HolidayStatusCode:2

SeveranceStatusCode:2

WagesInLieuStatusCode:2
EarningsVerificationResponseCommentIndicator:1
ResponseDueDate:2012-12-07
EarningsVerificationSourceCode:9
BrokerRecordTransactionNumber: 7850
BrokerRecordEffectiveDate:2011-04-22T12:46:49-0400

#SOAP Headers

To:BR999999999

From:Broker
EmployerTPASOAPTransactionNumber: 9229
MessageCode: 2

7.2.1.5 Log Files — POST
7.2.1.5.1 DEBUG log file

This log file is the main debugging log file for a given run. It contains all debug output logged
in the system during that run. If the system were to fail unexpectedly, the log file will contain
the most up to date status and will most likely indicate where the system failed. It also includes
all the data that is written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration
parameter. The naming scheme is as follows:

POST {SI|EV} DEBUG date time.log

For example:

POST EV DEBUG 2011-04-08 15-23-18-292.log

7.2.1.5.2 BRPT log file

This log file shows the results from the call to the BRPT on the response files submitted for a
given run. It will indicate all the records that had a problem in them and were thus stripped for

the response file being sent. It is the responsibility of the employer or TPA to correct these
errors and retransmit these responses to the Central Broker.

SIDESY

131

An example of the contents of a BRPT log file follows below:

#Failed Records

Record GUID Failure:00000000000000000000000060000180

Number of errors detected:1

#Errors

Error Number:1

Error Code:248

Error Message:Business Rule violation - There must be a value (Character -
Size 60) for PreparerCompanyName 1f PreparerTypeCode = T for Third Party
Administrator

Record GUID Failure:00000000000000000000000060000181

Number of errors detected:1

#Errors

Error Number:1

Error Code:248

Error Message:Business Rule violation - There must be a value (Character -
Size 60) for PreparerCompanyName if PreparerTypeCode = T for Third Party
Administrator

The log file is placed into the directory specified by the BrptLogFilePath configuration
parameter. The naming scheme is as follows:

POST {SI|EV} BRPT {to} {from} date time guid.log
For example:

POST_EV_BRPT ST BR999999999 2011-04-08 15-23-18-
292 01234567890123456789012345678901.10g

7.2.1.5.3 RESULTS log file
This log file shows the acknowledgement from the Central Broker for a given run.

An example illustrating the contents of a RESULTS log file follows below:

#SOAP Headers in Acknowledgement

To:BR999999999
EmployerTPAResponseFileGUID:577E92EE2CDSEE8SC44B90A5A581B36F4
From:Broker

MessageCode:1

#Acknowledgement

File GUID:577E92EE2CDS5EE8C44B90A5A581B36F4

Number of response Records Received:1

Number of response Records Received in Error:0

Date Started Received:2011-04-13T09:38:20.554-04:00
Date Finished Receiving:2011-04-13T09:38:20.870-04:00

The log file is placed into the directory specified by the ResultsLogFilePath configuration
parameter. The naming scheme is as follows:

POST {SI|EV} RESULTS {to} {from} date time guid.log

SIDESY 132

For example:

POST SI RESULTS BR999999999 ST 2011-04-08 15-23-18-
292 01234567890123456789012345678901.10g

7.2.1.6 Log Files— PULL
7.2.1.6.1 DEBUG log file

This is the main debugging log file for the whole application for a given run. It contains all
debug output logged in the system during the run. If the system were to fail unexpectedly, this
log file will contain the most up to date status and will most likely indicate where the system
failed. It also includes all the data written to the other log files.

The log file is placed into the directory specified by the DebugLogFilePath configuration
parameter. The naming scheme is as follows:

PULL {SI|EV} DEBUG date time.log

For example:

PULL_EV_DEBUG_2011-04-08 15-46-12-035.1og

7.2.1.6.2 BRPT log file

This log file shows the results from the call to the BRPT on the request files returned by the
Central Broker for a given run. If there are any records in this file, then the Employer Model
Connector will return a Message Code of 2 back to the Central Broker indicating a failure.
This file will then be pulled again on its next Pull call.

Here is an example of the contents of a BRPT log file:

#Failed Records

Record GUID Failure:30000000000000000000000000004000
Number of errors detected: 1

#Errors

Error Number:1

Error Code:101

Error Message:XSD validation violation

The log file is placed into the directory specified by the BrptLogFilePath configuration
parameter. The naming scheme is as follows:

PULL {SI|EV} BRPT {to} {from} date time PullCollection.log

For example:

SIDESY

133

PULL_EV_BRPT Broker BR999999999 2011-04-08 15-46-12-035_1.log

7.2.1.6.3 RESULTS log file

This log file shows the results of the Pull call from the Central Broker for a given run. It will
contain the Employer/TPA Separation Requests in XML format. If the pull AllFiles config file
parameter is set to true, then this file will contain all of the SOAP Headers and Response
Payloads the Model Connector received from the Central Broker.

Here is an example of the contents of a RESULTS log file.

#SOAP Headers

To:BR999999999

From:ST
EmployerTPASOAPTransactionNumber: 143650
MessageCode:1

#Request Payload
<EmployerTPASeparationRequestCollection xmlns:ns2="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-ws -utility-1.0.xsd"

xmlns="https:// REDACTED /schemas">
<EmployerTPASeparationRequest>

<StateRequestRecordGUID>c755d30ed7dd4662bc0452e9050c00df</StateRequestRecordG

UID>
<SSN>000989494</SSN>
<ClaimkEffectiveDate>2008-09-28</ClaimEffectiveDate>
<ClaimNumber>0</ClaimNumber>
<StateEmployerAccountNbr>342424001</StateEmployerAccountNbr>
<EmployerName>ELDORA ENTERPRISES LTD LIABILITY CO</EmployerName>
<FEIN>841173055</FEIN>
<TypeofEmployerCode>1</TypeofEmployerCode>
<TypeofClaimCode>1</TypeofClaimCode>
<BenefitYearBeginDate>2008-09-28</BenefitYearBeginDate>
<RequestingStateAbbreviation>CO</RequestingStateAbbreviation>
<UIOfficeName>CO CDLE</UIOfficeName>
<UIOfficePhone>3033189055</UIOfficePhone>
<UIOfficeFax>3033189014</UIOfficeFax>
<ClaimantLastName>WHEELOCK</ClaimantLastName>
<ClaimantFirstName>PHILIPPE</ClaimantFirstName>
<ClaimantMiddleInitial>M</ClaimantMiddleInitial>
<ClaimantJobTitle>SKI PATROL</ClaimantJobTitle>
<ClaimantReportedFirstDayofWork>2005-11-

25</ClaimantReportedFirstDayofWork>
<ClaimantReportedLastDayofWork>2008-04-

10</ClaimantReportedLastDayofWork>
<WagesWeeksNeededCode>NA</WagesWeeksNeededCode>
<ClaimantSepReasonCode>1</ClaimantSepReasonCode>
<AttachmentOccurrence>

<UniqueAttachmentId>1</UniqueAttachmentId>
<DescriptionofAttachmentCode>2</DescriptionofAttachmentCode>

SIDESY.

134

<TypeofDocument>NOTICE AND REQUEST FOR SEPARATION
INFO</TypeofDocument>

<ActionableAttachment>3</ActionableAttachment>

<AttachmentSize>53104</AttachmentSize>

<AttachmentData>elxydGYXXGFkKkZWZsYWS5nNMTAYNVxhbnNpXGFuc21jcGexMjUyXHVIMVxhZGVmZ
jBcZGVmZjBccQ==</AttachmentData>
</AttachmentOccurrence>
<RequestDate>2008-09-28</RequestDate>
<ResponseDueDate>2008-10-13</ResponseDueDate>
<FormNumber>UIB-290e</FormNumber>

<BrokerRecordTransactionNumber>2041294</BrokerRecordTransactionNumber>
<BrokerRecordEffectiveDate>2011-04-13T17:31:52.000-
04:00</BrokerRecordEffectiveDate>
</EmployerTPASeparationRequest>
<EmployerTPASeparationRequest>

<StateRequestRecordGUID>c755d30ed7dd4662bc0452e9050c00df</StateRequestRecordG
UID>
<SSN>000989494</SSN>
<ClaimEffectiveDate>2008-09-28</ClaimEffectiveDate>
<ClaimNumber>0</ClaimNumber>
<StateEmployerAccountNbr>342424001</StateEmployerAccountNbr>
<EmployerName>ELDORA ENTERPRISES LTD LIABILITY CO</EmployerName>
<FEIN>841173055</FEIN>
<TypeofEmployerCode>1</TypeofEmployerCode>
<TypeofClaimCode>1</TypeofClaimCode>
<BenefitYearBeginDate>2008-09-28</BenefitYearBeginDate>
<RequestingStateAbbreviation>CO</RequestingStateAbbreviation>
<UIOfficeName>CO CDLE</UIOfficeName>
<UIOfficePhone>3033189055</UIOfficePhone>
<UIOfficeFax>3033189014</UIOfficeFax>
<ClaimantLastName>WHEELOCK</ClaimantLastName>
<ClaimantFirstName>PHILIPPE</ClaimantFirstName>
<ClaimantMiddleInitial>M</ClaimantMiddleInitial>
<ClaimantJobTitle>SKI PATROL</ClaimantJobTitle>
<ClaimantReportedFirstDayofWork>2005-11-
25</ClaimantReportedFirstDayofWork>
<ClaimantReportedLastDayofWork>2008-04-
10</ClaimantReportedLastDayofWork>
<WagesWeeksNeededCode>NA</WagesWeeksNeededCode>
<ClaimantSepReasonCode>1</ClaimantSepReasonCode>
<AttachmentOccurrence>
<UniqueAttachmentId>1</UniqueAttachmentId>
<DescriptionofAttachmentCode>3</DescriptionofAttachmentCode>
<TypeofDocument>NOTICE AND REQUEST FOR SEPARATION
INFO</TypeofDocument>
<ActionableAttachment>3</ActionableAttachment>
<AttachmentSize>53104</AttachmentSize>

<AttachmentData>elxydGYxXGFkZWZsYWS5nMTAyNVxhbnNpXGFuc21ljcGexMjUyXHVIMVxhZGVmZ
JBCcZGVmZjBccQ==</AttachmentData>
</AttachmentOccurrence>
<RequestDate>2008-09-28</RequestDate>
<ResponseDueDate>2008-10-13</ResponseDueDate>

SIDESY.

135

<FormNumber>UIB-290e</FormNumber>

<BrokerRecordTransactionNumber>2041333</BrokerRecordTransactionNumber>
<BrokerRecordEffectiveDate>2011-04-20T16:39:43.000-
04:00</BrokerRecordEffectiveDate>
</EmployerTPASeparationRequest>
<EmployerTPASeparationRequest>

<StateRequestRecordGUID>aee086161ef8499092£f9f260154ea243</StateRequestRecordG
UID>
<SSN>334620158</SSN>
<ClaimEffectiveDate>2010-07-04</ClaimEffectiveDate>
<StateEmployerAccountNbr>20941456</StateEmployerAccountNbr>
<EmployerName>IKON OFFICE SOLUTIONS INC</EmployerName>
<FEIN>230334400</FEIN>
<TypeofEmployerCode>5</TypeofEmployerCode>
<TypeofClaimCode>1</TypeofClaimCode>
<BenefitYearBeginDate>2010-07-04</BenefitYearBeginDate>
<RequestingStateAbbreviation>TX</RequestingStateAbbreviation>
<UIOfficeName>TEXAS WORKFORCE COMMISSIO</UIOfficeName>
<UIOfficePhone>8886578749</UIOfficePhone>
<UIOfficeFax>5123222875</UIOfficeFax>
<ClaimantLastName>ORNEDO</ClaimantLastName>
<ClaimantFirstName>LINA</ClaimantFirstName>
<ClaimantMiddleInitial>B</ClaimantMiddleInitial>
<ClaimantJobTitle>ACCOUNTANT</ClaimantJobTitle>
<ClaimantReportedFirstDayofWork>2008-08-
17</ClaimantReportedFirstDayofWork>
<ClaimantReportedLastDayofWork>2010-07-
03</ClaimantReportedLastDayofWork>
<WagesWeeksNeededCode>NA</WagesWeeksNeededCode>
<ClaimantSepReasonCode>2</ClaimantSepReasonCode>
<RequestDate>2010-07-07</RequestDate>
<ResponseDueDate>2010-07-21</ResponseDueDate>
<FormNumber>610.0</FormNumber>

<BrokerRecordTransactionNumber>2041315</BrokerRecordTransactionNumber>
<BrokerRecordEffectiveDate>2011-04-14T10:46:23.000-
04:00</BrokerRecordEffectiveDate>
</EmployerTPASeparationRequest>
</EmployerTPASeparationRequestCollection>

#SOAP Headers

To:BR999999999

From:Broker
EmployerTPASOAPTransactionNumber:143652
MessageCode: 2

#Request Payload
<EmployerTPASeparationRequestCollection xmlns:ns2="http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-ws -utility-1.0.xsd"

xmlns="https:// REDACTED /schemas"/>

The log file is placed into the directory specified by the ResultsLogFilePath configuration
parameter. The naming scheme is as follows:

SIDESY 136

PULL {SI|EV} RESULTS {to} {from} date time PullCollection.log
For example:

PULL SI RESULTS Broker ST 2011-04-08 15-46-12-035 1.log

7.2.2 Model Connector — Spring

7.2.2.1 Spring-WS Model Connector

7.2.2.1.1 Model Connector Core Components
This Model Connector was developed using Java and the Spring framework.

Within the Model Connector, the REDACTED support is delegated by Spring-WS to Apache
Wss4j.

The Model Connector also uses JAXB?2 library to marshall/unmarshall XML to/from Java beans.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on JDK 1.4 and
Java 6.

The following main libraries are used:

e Spring-2.5.6 (Core Spring library)

e Spring-ws-1.5.8 (Spring Web Services library)

e Apache Wss4j-1.5.8 (REDACTED provider)

e Stax-api-1.0.1 (Streaming API for XML)

e JAXB22.1.7 (JAXB2 marshaller/unmarshaller)

For convenience, this sample includes all necessary Eclipse project config files and can be
imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.2.1.2 Sample Folders and Files
Root folder: sides-state-client
e /build.xml
Ant build file (requires Apache Ant 1.7.1 or later)
o Run "ant build" to compile
o Run "ant run-post" to execute sample State Post ws call

o Run "ant run-pull™ to execute sample State Pull/State Pull Acknowledgement ws
calls

e ./run-post.*
Unix/Windows shell scripts to run sample State Post Model Connector

SIDESY

137

o build sample with "ant build" first
e /run-pull.*

Unix/Windows shell scripts to run sample State Pull Model Connector
o build sample with "ant build" first

e /src
Contains:
o Java source code
The Spring config xml file (state-ws-emulator-config.xml)

O
o Log4j config file (log4j.properties)
o Sample Java

) -C/ZIcl)tr)nains required library jar files. All libraries used are open-source Apache LGPL-style
libraries which can be freely distributed.

e ./schemas —
Contains Ul SIDES XML schema files and State WSDL file

e /data

Contains sample payload xml data files for State Post (StateSIPost.xml) and State Pull
Query (StateSIPullQuery.xml)

e /bin

Build destination folder for compiled Java class files.

7.2.2.1.3 RunTime Configuration

The Model Connector has runtime configuration parameters that allow the state to setup its
connector. The configuration is specified in the Spring config xml file. The bean that specifies
these parameters is the configParams bean. All Java Application Model Connector classes use
the same Spring configuration file, state-ws-emulator-config.xml.

Table 42 - ConfigParam options

Parameter Name Applies To | Definition

debugLogFilePath Post and Pull | The fully qualified location of the debug log file; it
contains all the information in all the log files plus

SIDESY

138

Parameter Name Applies To | Definition

detailed information on the state of the Model
Connectors workings.

resultsLogFilePath Post and Pull | The fully qualified location of the results log file; it
contains all the information with the results from the
call to the Broker.

brptLogFilePath Post and Pull | The fully qualified location of the brpt log file; it
contains all the information with the results from the
BRPT.

pinLogFilePath Post The fully qualified location of the pin log file; it

contains all the information on the new pin created if
the createPin config parameter is set to true

pdfFilePath Pull The fully qualified location of the PDF file and
attachments; it will contain all the response received
in PDF form with all of the attachments decoded and
stored in the same directory

writeResponsesAsPDF Pull A boolean value that is “true” if the responses should
be printed out as the PDF and “false” otherwise.
responseFlatFilePath Pull The fully qualified location of the flat file containing

the Response information; it will contain all the
responses received in flat file format with all of the
attachments still encoded

writeResponsesAsFlatFile | Pull A boolean value that is “true” if the responses should
be written in the flat file format and “false”
otherwise.

createPin Post A boolean value that is “true” if the system is
directed to create the PIN for the request and “false”
otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants
the system to pull all files until the message code = 2
and “false” if the connector wants to make the call
repeatedly (so as to allow the connector more
control).

7.2.2.1.4 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the
Spring config xml file. All Java Application Model Connector classes use the same Spring
configuration file, state-ws-emulator-config.xml.

These are some important spring config file parameters:

SIDESY 139

The sample Model Connector uses REDACTED which is associated with the test-state endpoint
(Connector Name: State Test; Unique Id: ST) on the test SIDES Central Broker deployment. To
change the REDACTED used by Broker to REDACTED State's WS requests:

1. Import the new REDACTED
o See the article at REDACTED for helpful hints

2. Update REDACTED
3. Send the updated information on the REDACTED to the Broker.

7.2.2.1.5 Execution

This Model Connector contains 4 top-level Java classes with a main() method:
StatePostClient

StatePostClientDataFile

StatePullClient

o]
o]
o]
o StatePullClientDataFile

7.2.2.1.5.1 StatePostClient/StatePullClient

These files implement the State Post and the State Pull/Pull Acknowledgment web service calls
respectively.

The StatePostClient and StatePullClient use JAXB2 library for manipulating XML elements as
Java beans.

The StatePostClient/StatePullClient Model Connectors read message payload content from XML
files in the designated folder, send it to the test SIDES Broker Web services URL, and log the
Central Broker's response to the console.

The State Post Model Connector expects five or seven command line arguments:

Table 43 — Spring State Post Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is

SIDESY

140

Model Connector Argument Definition
destined for:

S| — Separation Information
EV — Earnings Verification

"FROM" SOAP header This is the unique id of the State that is
sending the file.
"TO" SOAP header This is the unique id of the Employer/TPA

that the file is destined for.
"StateRequestFileGUID™ SOAP header This is the State Request File GUID.

The payload XML source file The XML file that contains the payload for
the call.

SEIN SOAP header (optional — SEIN value if sending to SEwW

StatePostClient only, Separation employer/TPA

Information Only)

PIN SOAP header (optional — PIN value if sending to SEW

StatePostClient only) employer/TPA

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePostClient SI|EV FROM TO StateRequestFileGUID
Payload XML _File_Name [SEIN PIN]

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePostClient SI ST BR999999999
12345678901234567890123456789012 data/StateSIPost.xml

where:

Sl is the exchange the file is destined for

ST is the State Test unique id

BR999999999 is the unique id for EmployerTest Ul SIDES endpoint
12345678901234567890123456789012 is a test StateRequestFileGUID.

o O O O

The State Pull Model Connector expects five or six command line arguments:

Table 44 — Spring State Pull Model Connector Command Line Arguments
Model Connector Argument Definition
SI|EV This is the exchange that the file is
destined for:
SI — Separation Information
EV — Earnings Verification

"FROM™" SOAP header This is the unique id of the State that is
sending the file.

"TO" SOAP header This must be “Broker.”

“PullCollection” SOAP header 1 for regular pull, 2 for re-pull by

SIDESY 141

Model Connector Argument Definition

transmission number, 3 for re-pull by date
range

The payload XML source file The XML file that contains the payload for
the call.

StateSOAPTransactionNumber (optional) | The value of the
“StateSOAPTransactionNumber” SOAP
header. Only required if the pullCollection
parameter is 2 (re-pull by transaction
number) or 3 (re-pull by date range)

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePullClient SI|EV FROM Broker PullCollection
Payload XML _File_Name [StateSOAPTransactionNumber]

Sample Model Connector arguments are:
o java org.uisides.client.state.StatePullClient SI ST Broker 1 data/StateSIPullQuery.xml
where:
o Slis the exchange the file is destined for

o ST is the State Test unique id
o 1isthe pull collection for a regular pull

7.2.2.1.5.2 StatePostClientDataFile/StatePullClientDataFile

These files implement the State Post and the State Pull/Pull Acknowledgment Web service calls
respectively that read ASCII files. See Figure 1 and Figure 2.

The StatePostClientDateFile/StatePullClientDataFile Model Connectors read message payload
content from ASCII flat files in the designated folder, send it to the test SIDES Broker Web
services URL, and log Broker's response to the console.

The State Post Data File Model Connector expects two command line arguments:

Table 45 — Spring State Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

Data File This is the fully qualified path and name of

SIDESY

142

the data file that contains the flat file
structure of the Request(s).

To execute the Model Connector from the command line, type:
o java org.uisides.client.state.StatePostClientDataFile SI|EV Data_File_Name
Sample Model Connector arguments are:
o java org.uisides.client.state.StatePostClientDataFile SI data/StateSIPost.txt
where:
o Sl is the exchange the file is destined for

Example State Request File

#SOAP Header Values

To:BR999999999

From:ST
FileGuid:01234567890123456789012345678901

StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df
SSN:000989494
ClaimEffectiveDate:2008-09-28
ClaimNumber:0
StateEmployerAccountNbr:342424001
EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO
FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1
BenefitYearBeginDate:2008-09-28
RequestingStateAbbreviation:CO
UIOfficeName:CO CDLE
UIOfficePhone:3033189055
UIOfficeFax:3033189014
ClaimantLastName : WHEELOCK
ClaimantFirstName:PHILIPPE
ClaimantMiddleInitial:M
ClaimantJobTitle:SKI PATROL
ClaimantReportedFirstDayofWork:2005-11-25
ClaimantReportedLastDayofWork:2008-04-10
WagesWeeksNeededCode : NA
ClaimantSepReasonCode:1

UniqueAttachmentId:01
DescriptionofAttachmentCode:1
TypeofDocument:test-file.txt
ActionableAttachment:3
AttachmentSize:2000

SIDESY.

143

AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQU
FBDQpCQkJICQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICDOP
DQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDDQPERERE
REQNCKVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkKZGRKZGRKkZGRkZGRk
ZGRKZGRKZGRKZGRKZGRkZGRkZGRKZGRKZGRkZGRkZGRKZGRKYNCkdHROAHROAHROAHROAHROAHROA
HROAHROAHROJHROJHROAHROAHROAHROAHROAHROCNCKkhISENISEhISEhISERISERISERISERISERT
SEhISEhISEhISEhISEhISEhISEhISEGNCk1JSULJSULJISULISULISULISULISULISULISULISULJTS
U1JSU1JSULJSULJSULJISULISULISULISULISULIDOPKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk
PKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSgOKSOtLSOtLSO0tLSOtLS0tLSOtLS0tLS0tLSOtLSOtLS0t
LSOtLSO0tLSOtLS0tLS0tLSWOKTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXM
TEXMTEXMTEXMTEWNCK1INTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUONCkK50T
k50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk4NCk9PTO9PTOIPTO
9PTO9PTO9PTO9PTO9PTOIPTOIPTO9PTOIPTOIPTOIPTOIPTO9PTOSNC1BQUFBQUFBQUFBQUFBQUFR
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBODQPRUVFRUVFRUVFRUVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSU1JSULJSULJSULISULISULISULISULISULISU
1JSU1JSULJSULJSULISULISULISUGOKUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULINTUL
NTUINTUINTUINTU1INTU1MNC1RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVERUVFRUVFRUVFRUVFRUVER
UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFB
QUENCkJCQkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQOkICQkICQkICQkICQkICQkICQkICQKINC
kNDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQOMNCKRERE
RERAOKRUVFRUVERUVEFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVERUVFRUVFRUVFRUVFRQOKRkZGRkZGRkZGRKZGRKZG
RkZGRKZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRgOKROAHROAHROAHROAHROAHROJHR
0dHROJHROJHROAHROAHROAHROAHROAHROAHROAHRWOKSEhISEhISERISERISERISEhISEhISEhISE
hISEhISEhISEhISEhISEhRISEhISEhISAOKSULJSULJSULJISULJISULISULISULISULISULISULISUL
JSU1JSULJISULJISULJISULISULISULISULISULISUKNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK
SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLSOtLSOtLSOtLSOtLSO0tLS0tLSOtLSOtLSOtLSOtLS
0tLSOtLSOtLSOtLS0tLS0tLDOPMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTE
XMTEXMTEXMTEXMTAOKTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTQOKTkS
OTk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50TgOKTO9PTO9PTO9P
TO9PTO9PTO9PTO9PTO9PTO9PTOIPTOIPTO9PTOIPTOIPTOIPTO9PTwOKUFBQUFBQUFBQUEFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANC1FRUVFRUVFRUVEFRUVFRUVERUVERUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENC1JSU1JSU1JSULJSULJSULISULISULISULISULT
SU1JSU1JSULJSU1JSULJISULISULISDQPTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULNT
UINTUINTUINTUINTUINTUwOKVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVERUVFRUVERUVERUV
FRUVFRUVFRUVFQNCg==

UniqueAttachmentId:02

DescriptionofAttachmentCode:1

TypeofDocument:test-file2.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData: QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU
FBDQpCQkJCQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICDQP
DQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDDQPERERE
REQNCKVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk
ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRKYNCkdHROAHROJHROJHROAHROJHROd
HROAHROAHROJHROAHROAHROAHROAHROAHROAHROCNCKhISEhISEhISEhISEhRISERISEhISEhISEQT
SEhISEhISEhRISEhISEhISEhISEhISEgNCk1JSU1JSUL1JSULJSULJSULISULJSULJSULJSULISULTS
U1lJSULJSULJSULJISULJISULJISULJISULJISULISULIDQPKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk
PKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSgOKS0tLS0tLS0tLS0tLS0tLS0tLSOtLS0tLSOtLS0tLS0t
LSOtLSOtLSOtLSOtLSOtLSWOKTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTE XM
TEXMTEXMTEXMTEWNCKINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUONCkKS50T
k50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk4NCkO9PTO9PTO9PTO

SIDESY.

144

9PTO9PTO9PTOSPTO9PTOIPTOIPTO9PTOSPTOIPTOIPTOIPTO9PTOSNC1BQUFBQUFBQUFBQUFBQUER
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBODQPRUVFRUVFRUVFRUVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSULJSULJSULJSULJISULISULISULISULISULISU
1JSU1JSULJSULJSULJISULISULISUGOKUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULINTUL
NTUINTUINTUINTUINTU1MNC1RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVERUVFRUVFRUVFRUVFRUVER
UVFRUVFRUVFRUDQpBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFR
QUENCkJCQkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQKINC
kNDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQOMNCKRERE
RERAOKRUVFRUVERUVERUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQOKRkZGRkZGRkZGRKZGRKZG
RkZGRKZGRkZGRkZGRkKZGRKZGRKZGRkZGRkZGRKZGRKZGRkZGRgOKROAHROAHROAHROAHROAHROAHR
0dHROJHROJHROAHROAHROAHROJHROAHROAHROAHRWOKSEhISEhISERISERISENISEhISEhISEhISE
hISEhISEhISEhISEhISEhRISEhISEhISAOKSULJSULJSULJISULJISULISULISULISULISULISULISUL
JSU1JSULJSULJISULJISULISULJISULISULISULISUKNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK
SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLSOtLSOtLSOtLSOtLS0tLS0tLSOtLSOtLSOtLS0tLS
0tLSOtLSOtLS0tLS0tLS0tLDOPMTIEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTE
XMTEXMTEXMTEXMTAOKTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTQOKTkS
OTk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50TgOKTO9PTO9PTO9P
TO9PTO9PTO9PTO9PTO9PTO9PTOIPTOIPTO9PTOIPTO9PTOIPTOIPTwOKUFBQUFBQUFBQUFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANC1FRUVFRUVFRUVFRUVFRUVERUVERUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENC1JSU1JSU1JSULJSULJISULISULISULISULISULT
SU1JSU1JSULJSU1JSULJISULISULISDQPTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULNT
UINTUINTUINTUINTUINTUwOKVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVERUVFRUVERUVERUV
FRUVFRUVFRUVFQNCg==

RequestDate:2008-09-28
ResponseDueDate:2008-10-13
FormNumber:UIB-290e

The State Pull Data File Model Connector expects two command line arguments:

Table 46 — Spring State Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

Data File This is the fully qualified path and name of
the data file that contains the flat file
structure of the Response Collection

Query.

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePullClientDataFile SI|EV Data_File_Name
Sample Model Connector arguments are:

o java org.uisides.client.state.StatePullClientDataFile SI data/StateSIPullQuery.txt

where:

SIDESY.

145

o Sl is the exchange the file is destined for

Example State Pull File

#SOAP Header Values

From:ST

To:Broker

PullCollection:3
StateSOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value
StatePostalCode:ST

#optional fields based on PullCollection value
StateSOAPTransactionNumber:141690
BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00
BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.2.2 Employer/TPA Model Connector — Spring WS

This sample Model Connector demonstrates how an Employer/TPA can access the Ul SIDES
Broker Web services using Spring-WS Model Connector libraries.

REDACTED support is delegated by Spring-WS to Apache Wss4j.

This Model Connector also uses JAXB2 library to marshall/unmarshall XML to/from Java
beans.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on jdk 1.4 and
Java 6.

The following main libraries are used:

e Spring-2.5.6 (Core Spring library)

e Spring-ws-1.5.8 (Spring Web Services library)

e Apache Wss4j-1.5.8 (REDACTED provider)

e Stax-api-1.0.1 (Streaming API for XML)

e JAXB22.1.7 (JAXB2 marshaller/unmarshaller)

For convenience, this sample includes all necessary Eclipse project config files and can be
imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.2.2.1 Sample Folders and Files
Root folder: sides-employer-client

e /build.xml
SIDESY

146

Ant build file (requires Apache Ant 1.7.1 or later)
o Run "ant build" to compile
o Run "ant run-post” to execute sample Employer/TPA Post ws call
o Run "ant run-pull™ to execute sample Employer/TPA Pull/Employer/TPA Pull
Acknowledgement ws calls

e ./run-post.*

Unix/Windows shell scripts to run sample Employer/TPA Post Model Connector
o build sample with "ant build" first

e /run-pull.*

Unix/Windows shell scripts to run sample Employer/TPA Pull Model Connector
o build sample with "ant build™ first

e /src

Contains:
o Java source code

o The Spring config xml file (employer-ws-emulator-config.xml)
o Log4j config file (log4j.properties)
o Sample

o Jlib

Contains required library jar files. All libraries used are open-source Apache LGPL-style
libraries which can be freely distributed.

e /schemas —

Contains Ul SIDES XML schema files and Employer/TPA WSDL file

e /data

Contains sample payload xml data files for Employer/TPA Post (EmpPost.xml) and
Employer/TPA Pull Query (EmployerPullQueryl.xml)

e /bin

Build destination folder for compiled Java class files.

7.2.2.2.2 RunTime Configuration

SIDESY 147

The Model Connector has runtime configuration parameters that allow the employer/TPA to
setup its connector. The configuration is specified in the Spring config xml file. The bean that
specifies these parameters is the configParams bean. All Java Application Model Connector
classes use the same Spring configuration file, employer-ws-emulator-config.xml.

Table 47 - ConfigParam options

Parameter Name Applies To | Definition

debugLogFilePath Post and Pull | The fully qualified location of the debug log file; it
contains all the information in all the log files plus
detailed information on the state of the Model
Connectors workings.

resultsLogFilePath Post and Pull | The fully qualified location of the results log file; it
contains all the information with the results from the
call to the Broker.

brptLogFilePath Post and Pull | The fully qualified location of the brpt log file; it
contains all the information with the results from the
BRPT.

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the response received
in PDF form with all of the attachments decoded and
stored in the same directory

writeRequestsAsPDF Pull A boolean value that is “true” if the requests should
be printed out as the PDF and “false” otherwise.
requestFlatFilePath Pull The fully qualified location of the flat file containing

the Request information; it will contain all the
requests received in flat file format with all of the
attachments still encoded

writeRequestsAsFlatFile | Pull A boolean value that is “true” if the requests should
be written in the flat file format and “false”
otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2
and “false” if the connector wants to make the call
repeatedly (so as to allow the connector more
control).

7.2.2.2.3 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the
Spring config xml file. All Java Application Model Connector classes use the same Spring
configuration file, employer-ws-emulator-config.xml.

SIDESY 148

The sample Model Connector uses a REDACTED
1. Import the REDACTED file
o See the article REDACTED for helpful hints
2. Update REDACTED

3. Send the updated information on the REDACTED to the Broker.

7.2.2.2.4 Execution
This Model Connector contains four top-level Java classes with a main() method:

EmployerPostClient
EmployerPullClient
EmployerPostClientDataFile
EmployerPullClientDataFile

o O O O

7.2.2.2.4.1 EmployerPostClient/EmployerPullClient

These files implement the Employer/TPA Post and the Employer/TPA Pull/Pull
Acknowledgment Web service calls respectively.

The EmployerPostClient and EmployerPullClient use JAXB2 library for manipulating XML
elements as Java beans.

The Model Connectors read message payload content from XML files in the designated folder,
send it to the test SIDES Broker Web services URL, and log Broker's response to the console.

The employer/TPA Post Model Connector expects five command line arguments:

Table 48 — Spring Employer/TPA Post Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

SI — Separation Information

EV — Earnings Verification

SIDESY

149

Model Connector Argument Definition

"FROM™" SOAP header This is the unique id of the Employer/TPA
that is sending the file.
"TO" SOAP header This is the unique id of the State that the

file is destined for.

"EmployerTPAResponseFileGUID" SOAP | This is the Employer/TPA Response File

header GUID.
The payload XML source file The XML file that contains the payload for
the call.

To execute the Model Connector from the command line, type:

o java org.uisides.client.employer.EmployerPostClient SI|[EV FROM TO
EmployerTPARequestFileGUID Payload XML_File_Name

Sample Model Connector arguments are:
o java org.uisides.client.employer.EmployerPostClient SI BR999999999 ST
12345678901234567890123456789012 data/ResponseSI1.xml
where:
Sl is the exchange the file is destined for
BR999999999 is the Employer Test unique id

ST is the unique id for State Test Ul SIDES endpoint
12345678901234567890123456789012 is a test EmployerTPAResponseFileGUID.

o O O O

The employer/TPA Pull Model Connector expects five or six command line arguments:

Table 49 — Spring Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

S| — Separation Information
EV — Earnings Verification

"FROM" SOAP header This is the unique id of the State that is
sending the file.

"TO" SOAP header This must be “Broker.”

“PullCollection” SOAP header 1 for regular pull, 2 for re-pull by
transmission number, 3 for re-pull by date
range

The payload XML source file The XML file that contains the payload for
the call.

EmployerTPASOAPTransactionNumber | The value of the

SIDESV

150

Model Connector Argument Definition

(optional) “EmployerTPASOAPTransactionNumber”
SOAP header. Only required if the
pullCollection parameter is 2 (re-pull by
transaction number) or 3 (re-pull by date
range)

To execute the Model Connector from the command line, type:
o java org.uisides.client.employer.EmployerPullClient SI|EV FROM Broker PullCollection
Payload_XML_File_Name [EmployerTPASOAPTransactionNumber]
Sample Model Connector arguments are:
o java org.uisides.client.employer.EmployerPullClient S| BR999999999 Broker 1
data/EmployerSIPullQuery.xml
where:
o Slis the exchange the file is destined for

o BR999999999 is the Employer Test unique id
o 1listhe pull collection

7.2.2.2.4.2 EmployerPostClientDataFile/EmployerPullClientDataFile

These files implement the employer/TPA Post and the employer/TPA Pull/Pull Acknowledgment
Web service calls that read ASCII files. See Figure 1 and Figure 2.

The EmployerPostClientDateFile/EmployerPullClientDataFile Model Connectors read message
payload content from ASCII flat files in the designated folder, send it to the test SIDES Broker
Web services URL, and log Broker's response to the console.

The employer/TPA Post Data File Model Connector expects two command line arguments:

Table 50 — Spring Employer/TPA Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

SI — Separation Information

EV — Earnings Verification

Data File This is the fully qualified path and name of

SIDESY

151

Model Connector Argument Definition

the data file that contains the flat file
structure of the Response(s).

To execute the Model Connector from the command line, type:
o java org.uisides.client.employer.EmployerPostClientDataFile SI|EV Data_File_Name
Sample Model Connector arguments are:
o java org.uisides.client.employer.EmployerPostClientDataFile SI data/EmployerSIPost.txt
where:
o Sl is the exchange the file is destined for

Example Employer Response File

#SOAP Headers

To:ST

From:BR999999999
FileGuid:12345678901234567890123456789014

StateRequestRecordGUID:30000000000000000000000000004003
BrokerRecordTransactionNumber:2013889
SSN:560348477

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620
StateEmployerAccountNbr:0065560
CorrectedEmployerName:J C Penny
CorrectedStateEmployerAccountNbr:0123456789
CorrectedFEIN:987654321

OtherSSN:660348477
ClaimantNameWorkedAsForEmployer:Andy Wilson
ClaimantJobTitle:Customer Service Associate
SeasonalEmploymentInd:N
EmployerReportedClaimantFirstDayofWork:2007-10-11
EmployerReportedClaimantLastDayofWork:2007-10-14
EffectiveSeparationDate:2007-10-14
TotalEarnedWagesNeededInd: 3
TotalWeeksWorkedNeededInd: 3
AverageWeeklyWage:125.00

EmployerSepReasonCode: 3

ReturnToWorkInd:N

WorkingAllAvailableHoursInd:N
NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason
LaborDisputeTypeInd:L

#Remuneration
RemunerationTypeCode: 3
RemunerationAmountPerPeriod:999.99

SIDESY.

152

RemunerationPeriodFrequencyCode:B
DateRemunerationIssued:2007-10-15
EmployerAllocationInd:N
AllocationBeginDate:2007-10-15
AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40
MandatoryRetirementInd:N
MandatoryPension:N
ContributoryorNotContributoryClaimantInd:N
ClaimantPensionContributionPercent:100
DischargeReasonCode: 3
FinalIncidentReason:FinalIncidentReason
FinalIncidentDate:2007-10-13
ViolateCompanyPolicyInd:N
DischargePolicyAwareInd:N
DischargePolicyAwareExplanationCode:V

#PriorIncidentOccurrence
PriorIncidentDate:2007-10-10
PriorIncidentReason:None
PriorIncidentWarningInd:Y
PriorIncidentWarningDate:2007-10-10
PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson
WhoDischargedTitle:Customer Service Associate
VoluntarySepReasonCode: 3
HiringAgreementChangesCode:3
HiringAgreementChangesComments:HiringAgreementChangesComments
ClaimantActionsToAvoidQuitInd:N
ContinuingWorkAvailableInd:N
PreparerTypeCode:T

PreparerCompanyName:J C Penny
PreparerTelephoneNumberPlusExt:9724312108
PreparerContactName:Ed A Jones
PreparerTitle:Project Manager
PreparerFaxNbr:9725312108
PreparerEmailAddress:edjones@jcpenneytest.com

The employer/TPA Pull Data File Model Connector expects two command line arguments:

Table 51 — Spring Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

Data File This is the fully qualified path and name of
the data file that contains the flat file
structure of the Request Collection Query.

To execute the Model Connector from the command line, type:

SIDESY.

153

o java org.uisides.client.state.EmployerPullClientDataFile SI|EV Data_File_Name
Sample Model Connector arguments are:
o java org.uisides.client.state.EmployerPullClientDataFile Sl data/StateSIPullQuery.txt
where:
o Sl is the exchange the file is destined for

Example Employer/TPA Pull File

#SOAP Header Values

From:BR0O00000003

To:Broker

PullCollection:3
EmployerTPASOAPTransactionNumber:141690

#pull query values

#mandatory field, same as From value
UniqueID:BRO00000003

#optional fields based on PullCollection value
EmployerTPASOAPTransactionNumber:141690
BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00
BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.3 Model Connector - .Net (C#)

7.2.3.1 State Model Connector — .Net (C#)

This Model Connector class library and Windows console application demonstrates how a state
and employer connector can access the Ul SIDES Broker Web services using a Windows .Net
client application written in C#.

The Model Connector was originally developed in C# using Visual Studio 2005 for .Net
Framework 2.0 with .Net 3.0 runtime components and WCF. The current version of the software
was refactored and updated for Visual Studio Express 2010, C# Edition.

In order to open the sample application in Visual Studio, the following system requirements must
be met:

e Visual Studio Express 2010 or later, C# Edition.
e Microsoft Windows SDK for .Net Framework 3.0 or later

7.2.3.1.1 Sample Folders and Files

SIDESY

154

Root folder: sides-state-client-wcf

[StateClient.sIn

o Visual Studio Express 2010 solution file. Double click to open Model Connector
projects inside Visual Studio.

o Solution contains two projects: StateClient, a class library project that implements
functionality for calling Broker Web services, and StateClientConsole, a
Windows Console application project which wraps StateClient class library to
provide access to its functionality via command prompt.

StateClient.csproj
o Visual Studio Express 2010 C# Project file for StateClient class library. Produces
stateClient.dll executable class library.
[StateClient.cs, ./EvStateClient.cs
o C# source code file — main source code file for StateClient class library.
Jutil/XmilSerializerUtils.cs

o C# source code file containing static utility methods for reading/writing XML

files using XmlSerializer.
Jutil/DataFileReader.cs, ./util/DataFileWriter.cs

o C# source code files for the data file reader and writer

util/ClientUtils.cs

o C# source code file for the client utilities package

IService References/StateBroker.cs, ./Service References/EvStateBroker.cs

o C# source code file containing the WCF Web service client implementation for
State Broker Web services. Generated by ServiceModel Metadata Utility Tool
(Svcutil.exe) Windows SDK tool from StateBroker.wsdl file and referenced XSD
(XML Schema) files.

JService References/StateBroker.map, ./Service References/EvStateBroker.map

o Visual Studio file generated using “Add Service Reference” tool. Maps Test

Broker Web services URL to generated ServiceBroker.cs interfaces.
JApp.config

o Main application configuration file, becomes stateClient.dll.config when project

is built.
Jgen_svc_ref.bat

o Windows shell scripts to generate ./Service References/StateBroker.cs WCF client

code for State Broker Web services using Svcutil.exe Windows SDK tool
IStateClientConsole

o Contains console interface wrapper C# project files for StateClientConsole, a
Windows console application project which provides command-line interface for
the StateClient class library

StateClientConsole/StateClientConsole.csproj

o StateClientConsole C# Windows console application project file. Part of

StateClient.sIn solution.
StateClientConsole/StateClientConsole.csproj

o StateClientConsole source code file. Parses command-line arguments and calls

method in stateClient.dll
StateClientConsole/App.config

SIDESY

155

o Console interface application configuration file, copy of ./App.config. Becomes
stateClientConsole.exe.config in output binaries.
e Jlib
o Contains log4net.dll class library — Apache Log4Net open-source logging library
e /data
o Contains StateBroker.wsdl, XSD XML schema files referenced in the WSDL file,
sample Separation Request and Pull query XML files.

e ./bin, ./obj
o Build and debugging artifact destination folders for compiled application and
DLL files.
A

7.2.3.1.2 Run Time Configuration

The Model Connector has runtime configuration parameters that allow the state to setup its
connector. These parameters are identified in the AppSettings section of the AppConfig file. In
Visual Studio at development time this file is named ./App.config (for StateBroker.dll) and
StateClientConsole/App.config (for console interface). All versions of this file have identical
content. The keys used by the runtime configuration are detailed below.

Table 52 - AppSettings options

Key Name Applies To | Definition

debugLogFilePath Post and Pull | The fully qualified location of the debug log file; it
contains all the information in all the log files plus
detailed information on the state of the Model
Connectors workings.

resultsLogFilePath Post and Pull | The fully qualified location of the results log file; it
contains all the information with the results from the
call to the Broker.

brptLogFilePath Post and Pull | The fully qualified location of the brpt log file; it
contains all the information with the results from the
BRPT.

pinLogFilePath Post The fully qualified location of the pin log file; it

contains all the information on the new pin created if
the createPin config parameter is set to true

pdfFilePath Pull The fully qualified location of the PDF file and
attachments; it will contain all the response received
in PDF form with all of the attachments decoded and
stored in the same directory

writeResponsesAsPDF Pull A boolean value that is “true” if the responses should

SIDESY

156

Key Name

Applies To

Definition

be printed out as the PDF and “false” otherwise.

responseFlatFilePath

Pull

The fully qualified location of the flat file containing
the Response information; it will contain all the
responses received in flat file format with all of the
attachments still encoded

writeResponsesAsFlatFile

Pull

A boolean value that is “true” if the responses should
be written in the flat file format and “false”
otherwise.

createPin

Post

A boolean value that is “true” if the system is
directed to create the PIN for the request and “false”
otherwise.

pullAllFiles

Pull

A boolean value that is “true” if the connector wants
the system to pull all files until the message code = 2
and “false” if the connector wants to make the call
repeatedly (so as to allow the connector more
control).

7.2.3.1.3 Web Services Configuration

Configuration parameters such as Broker Web services URL and settings are
located in the StateClient.dll.config (if only stateClient.dll is used), as well as in
StateClientConsole.exe.config if the command-line interface is used. In Visual Studio at
development time this file is named ./App.config (for stateBroker.dll) and
StateClientConsole/App.config (for console interface). All versions of this file have identical

content.

Notable configuration settings are:

e address attribute of the endpoint element: determines the Broker Web services URL used
by the client. By default, Test Broker Web services URL is used: <endpoint address="
https:// REDACTED” .../>.

e httpTransport or httpsTransport child elements of binding element: one of these elements
must be present, and must reflect the URL type in endpoint address attribute as described
above. Use <httpTransport/> for non-secure Web service URL like
http://localhost:8080/sides-trunk/ws, and <httpsTransport
authenticationScheme="Negotiate" maxReceivedMessageSize="10000000"/> for secure
URLs. httpsTransmport element is enabled by default to correspond to the secure Test

Broker URL (https REDACTED).
e findValue attribute of REDACTED

e findValue attribute REDACTED

In order to be able to run this Model Connector, you must first install the client

SIDESY

157

REDACTED

7.2.3.1.4 Build and Execution

To build Model Connector executables, run “Build->Rebuild Solution” from Visual Studio
menu. The StateClientConsole project is configured as the startup project, so if you select
Debug->Start Debugging from Visual Studio menu, org.uisides.client.state.StateClientConsole’s
main() method will invoked, defined in ./StateClientConsole/StateClientConsole.cs. Since the
method expects command-line arguments, the arguments can be specified by right-clicking the
StateClientConsole project node inside Solution Explorer, then selecting Properties. In the
properties page that opens, select the Debug tab and type the parameters in the “Command line
arguments” field.

The command-line interface expects the following types of arguments.
For State Post, the arguments are:

stateClientConsole post SI|EV From To StateRequestFileGUID payloadFileName [SEIN PIN]

Table 53 — .Net (C#) State Post Model Connector Command Line Arguments

Model connector Definition
Argument
Post The operation name indicating State Post
SI|EV This is the exchange that the file is destined for:

Sl — Separation Information
EV — Earnings Verification

From The value of the “From” SOAP header, which is the unique ID of
the State as defined by the Broker admin, for example “ST” for State
Test endpoint

To The value of the “To” SOAP header, the unique ID of the
destination employer/TPA as defined by the Broker admin, for
example “BR999999999” for Employer Test endpoint

StateRequestFileGUID | The value of the “StateRequestFileGUID” SOAP header, for
example “12345678901234567890123456789012”

payloadFileName The path to the XML file with StateSeparationRequestCollection as
the root element
SEIN (Optional) The SEIN (State employer identification number) for the destination

employer/TPA. Only required if the destination employer/TPA is
expected to use the SIDES Employer Website(SEW) (not regular
SIDES Web services) to provide a response.

PIN (Optional) The PIN (personal identification number) for the destination
employer/TPA to use when accessing the SEw Website. Only
required if the destination employer/TPA is expected to use the SEW
Website (not regular SIDES Web services) to provide a response.

SIDESY

158

Here is an example command for State Test endpoint posting/sending data in data/StatePost.xml
file to Employer Test endpoint (BR999999999):

stateClientConsole post SI ST BR999999999 12345678901234567890123456789012

data\StatePost.xml

The State client will send the content of data\StatePost.xml in a properly secured SOAP message
with specified header values, and will print out the response payload from Broker (an
acknowledgment) along with any response SOAP header values. The response to the example

command should look like this:

2010-07-07 19:09:28,894

Broker

2010-07-07 19:09:28,894
2010-07-07 19:09:28,894

[1] DEBUG [(null)] - Response From header:

[1] DEBUG [(null)] - Response To header: ST
[1] DEBUG [(null)] - Response

StateRequestFileGUID header: 12345678901234567890123456789012

2010-07-07 19:09:28,894

header: 1

2010-07-07 19:09:29,067

version="1.0"?2>

[1] DEBUG [(null)] - Response MessageCode

[1] DEBUG [(null)] - Response: <?xml

<StateSeparationRequestCollectionAcknowledgement
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<StateRequestFileGUID xmlns="https:// REDACTED
/schemas">12345678901234567890123456789012</StateRequestFileGUID>

<NumberOfRequestRecordsReceived xmlns="https:// REDACTED
/schemas">1</NumberOfRequestRecordsReceived>

<NumberOfRequestRecordsInError xmlns="https:// REDACTED
/schemas">0</NumberOfRequestRecordsInError>

<DateStartedReceivingTransmission xmlns="https:// REDACTED
/schemas">2010-07-07T719:09:28.489-
05:00</DateStartedReceivingTransmission>

<DateFinishedReceivingTransmission xmlns="https:// REDACTED
/schemas">2010-07-07T719:09:28.718~-
05:00</DateFinishedReceivingTransmission>
</StateSeparationRequestCollectionAcknowledgement>

2010-07-07 19:09:29,068

For State Pull, the arguments are:

[1] DEBUG [(null)] - Press any key to exit.

stateClientConsole pull SI|EV From To pullCollection payloadFileName [stateSoapTnNumber]

Table 54 — .Net (C#) State Pull Model Connector Command Line Arguments

Model Connector Argument

Definition

Pull

The operation name indicating State Pull

SI|EV This is the exchange that the file is destined for:
S| — Separation Information
EV — Earnings Verification
From The value of the “From” SOAP header, which is the unique

ID of the State as defined by the Broker admin, for example

SIDESY.

159

Model Connector Argument Definition

“ST” for State Test endpoint

“Broker” for pull operations

To The value of the “To” SOAP header, which is always

type of pull, one of: 1 for regular pull, 2 for re-pull
transmission number, 3 for re-pull by date range

pullCollection The value of the “PullCollection” SOAP header indicating

by

payloadFileName The path to the XML file

stateSoapTnNumber (optional) The value of the “StateSOAPTransactionNumber” SOAP
header. Only required if the pullCollection parameter is 2
(re-pull by transaction number) or 3 (re-pull by date range)

Here is an example command for State Test endpoint pulling any staged responses (regular pull,

pullCollection = 1) based on query parameters in data/StatePullQuery.xml:

stateClientConsole pull SI ST Broker 1 data\StatePullQuery.xml

The State client will send the content of data\StatePullQuery.xml in a properly secured SOAP
message with specified header values, and will print out the response payload from Broker (a

collection of responses if any) along with any response SOAP header values. The client will then

print out and send and acknowledgement to Broker to acknowledge pulled responses. The
response to the example command should look like this (an empty responses collection was

pulled in this case):

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response From header
Broker

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response To header:
2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response
StateSOAPTransactionNumber header: 48302

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response
NextStateSOAPTransactionNumber header:

2010-07-07 19:12:33,477 [1] DEBUG [(null)] - Response MessageCode
header: 2

2010-07-07 19:12:33,696 [1] DEBUG [(null)] - Response: <?xml

version="1.0"?>

<StateSeparationResponseCollection
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" />

2010-07-07 19:12:34,094 [1] DEBUG [(null)] - Sent acknowledgment:
version="1.0"?>
<StateSeparationResponseCollectionAcknowledgement
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<StateSOAPTransmissionNumber xmlns="https:// REDACTED
/schemas">48302</StateSOAPTransmissionNumber>

<NumberOfResponseRecordsReceived xmlns="https:// REDACTED
/schemas">0</NumberOfResponseRecordsReceived>

<NumberOfResponseRecordsInError xmlns="https:// REDACTED
/schemas">0</NumberOfResponseRecordsInError>

SIDESY

ST

<?xml

160

<DateStartedReceivingTransmission xmlns="https:// REDACTED
/schemas">0001-01-01T00:00:00</DateStartedReceivingTransmission>

<DateFinishedReceivingTransmission xmlns="https:// REDACTED
/schemas">0001-01-01T00:00:00</DateFinishedReceivingTransmission>
</StateSeparationResponseCollectionAcknowledgement>
2010-07-07 19:12:34,095 [1] DEBUG [(null)] - Press any key to exit.

7.2.3.1.4.1 StateClientConsole with ASCII file

This file implements the State Post and the State Pull/Pull Acknowledgment Web service calls
respectively that read ASCII files. See Figure 1 and Figure 2.

The StateClientConsole with ASCII file Model Connectors reads message payload content from
ASCII flat files in the designated folder, sends it to the test SIDES Broker Web services URL,
and logs the Broker's response to the console/log files.

The State Post Model Connector expects three command line arguments:

Table 55 — .Net State Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition
SI|EV This is the exchange that the file is
destined for:
S| — Separation Information
EV — Earnings Verification
Post This is a Post command
Data File This is the fully qualified path and name of
the data file that contains the flat file
structure of the Separation Request(s).

To execute the Model Connector from the command line, type:
o StateClientConsole SI|EV post Data_File_Name
Sample Model Connector arguments are:
o StateClientConsoleDataFile SI post data/StateSIPost.txt
where:
o Sl is the exchange the file is destined for

Example State Request File

#SOAP Header Values
To:BR999999999

SIDESY 161

From:ST
FileGuid:01234567890123456789012345678901

StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df
SSN:000989494
ClaimEffectiveDate:2008-09-28
ClaimNumber:0
StateEmployerAccountNbr:342424001
EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO
FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1
BenefitYearBeginDate:2008-09-28
RequestingStateAbbreviation:CO
UIOfficeName:CO CDLE
UIOfficePhone:3033189055
UIOfficeFax:3033189014
ClaimantLastName : WHEELOCK
ClaimantFirstName:PHILIPPE
ClaimantMiddleInitial:M
ClaimantJobTitle:SKI PATROL
ClaimantReportedFirstDayofWork:2005-11-25
ClaimantReportedLastDayofWork:2008-04-10
WagesWeeksNeededCode : NA
ClaimantSepReasonCode:1

UniqueAttachmentId:01

DescriptionofAttachmentCode:1

TypeofDocument:test-file.txt

ActionableAttachment:3

AttachmentSize:2000
AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQUFBQUEFBQU
FBDQpCQkJCQkJICQOkIJCQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQOkICOkICQkICOkICDOP
DQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDDQPERERE
REQNCkVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk
ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHROAHROAHROAHROJHROAHROd
HROAHROAHROAHROAHROAHROAHROAHROAHROAHROCNCKkhISEhRISEhISEhRISEhISERISERISEhISERhT
SEhISEhISEhISEhISEhISEhISEhRISEgNCk1JSU1JSU1JSULJSUL1JSULJSULIJSULISULJSULJSULIS
U1JSULJSULJSULJSULJISULJISULJISULJISULJISULIDQPKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk
PKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSgOKS0tLSOtLSOtLSOtLSOtLSOtLSOtLSOtLS0tLS0tLS0t
LSOtLSOtLSOtLSOtLSOtLSWOKTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTExXM
TEXMTEXMTEXMTEWNCKINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUONCKSOT
k50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk4NCk9PTO9PTO9PTO
9PTOSPTO9PTOSPTOOPTOOPTOOPTOOPTOSPTO9PTOOPTOSPTOOPTO8SNCIBQUFBQUFBQUFBQUEFBQUER
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQUEFBQUFBQUFBODOpRUVFRUVFRUVFRUVFRUVFRUVEFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSU1JSU1JSU1JSULJSULJSULJSULISULJSULISU
1JSU1JSU1JSULJSULJSULJSULIJSUgOKUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUL
NTUINTUINTUINTUINTUIMNCI1RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFEFR
UVFRUVFRUVFRUDQpBQUEFBQUEFBQUEFBQUEFBQUEFBOQUEFBQUEFBQUEFBQUEFBQUEFBQUEFBQUEFBQUEBQUEBQUEB
QUENCkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQOkICOkICQkICQkICQkICQkICQkICQKINC
kNDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQOMNCkRERE
RERAOKRUVFRUVFRUVFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQOKRkZGRkZGRkZGRkZGRkZG
RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRgOKROAHROAHROAHROAHROAHROJHR
0dHROAHROAHROAHROAHROAHROAHROAHROAHROAHRWOKSERISEhISEhRISEhISERISEhISEhRISEhISE

SIDESY.

162

hISEhISEhISEhISEhISENISEhISEhISAOKSULJSULJSULJISULISULISULISULISULISULISULISUL
JSU1JSULJSULJISULJISULJISULISULISULISULISUKNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK
SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLSOtLSOtLSOtLSOtLS0tLS0tLSOtLSOtLSOtLSOtLS
0tLSOtLSOtLS0tLS0tLS0tLDOPMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTE
XMTEXMTEXMTEXMTAOKTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULINTUINTQOKTkS
OTk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50TgOKTO9PTO9PTO9P
TO9PTO9PTOIPTO9PTO9PTO9PTOIPTOIPTO9PTOIPTOIPTOIPTO9PTwOKUFBQUFBQUFBQUFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANC1FRUVFRUVFRUVEFRUVFRUVERUVERUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENC1JSULJSU1JSULJSULJISULISULISULISULISULJ
SU1JSU1JSULJSULJSULJISULISULISDQPTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULNT
UINTUINTUINTUINTUINTUwOKVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVERUVFRUVERUVERUV
FRUVFRUVFRUVFQNCg==

UniqueAttachmentId:02

DescriptionofAttachmentCode:1

TypeofDocument:test-file2.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData: QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU
FBDQpCQkJCQkJICQOkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICOkICQkICQkICDOP
DQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDDQPpERERE
REQNCKVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk
ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRKYNCkdHROAHROJHROJHROAHROJHROd
HROAHROAHROJHROdJHROAHROAHROAHROAHROAHROCNCKhISEhISEhISEhISEhRISEhISEhISEhISEQT
SEhISEhISEhRISEhISEhISEhRISEhISEgNCk1JSU1JSULJSULJSULJSULJSULJSULISULJSULISULTS
U1JSU1JSU1JSU1JSULJSULJISULJISULISULISULIDQPKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk
PKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSgOKS0tLSOtLSOtLSOtLSOtLSOtLSOtLSOtLS0tLS0tLS0t
LSOtLSOtLSOtLSOtLSOtLSWOKTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTExM
TEXMTEXMTEXMTEWNCKINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUONCkKS50T
k50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk4NCkOPTO9PTO9PTO
9PTO9PTOSPTO9PTO9PTO9PTOOPTO9PTO9PTOOPTOOPTO9PTO9PTO8NCIBQUFBQUFBQUFBQUFRQUEB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBODQPpRUVFRUVFRUVFRUVFRUVFRUVEFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSU1JSU1JSU1JSUL1JSULJSULJSULJSULJISULTSU
1JSU1JSU1JSULJSULJSULJSULJSUgOKUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUL
NTUINTUINTUINTUINTUIMNCI1RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFEFR
UVFRUVFRUVFRUDQpBQUFBQUFBQUEFBQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQUEFBQUFBQUFBQUEBQUEB
QUENCkJCQkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQKINC
kKNDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQOMNCKRERE
RERAOKRUVFRUVFRUVFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQOKRkZGRkZGRkZGRkZGRKZG
RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRgOKROAHROAHROAHROAHROAHROJHR
0dHROJHROAHROAHROJHROJHROAHROAHROAHROAHRWOKSEhISEhISEhISEhISEhISEhRISEhISEhISE
hISEhISEhISEhISEhISEhISEhISEhISAOKSU1JSU1JSUL1JSUL1JSULJSULJSULJSULJSULJSULJSUL
JSULJSU1JSU1JSULJSULJISULJISULISULISULISUKNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK
SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLS0tLSOtLS0tLSOtLSOtLSOtLSOtLS0tLS0tLS0tLS
0tLSOtLSOtLSOtLSOtLSOtLDOQPMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTE
XMTEXMTEXMTEXMTAOKTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTQOKTkS
OTk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tg0KTO9PTO9PTO9P
TOSPTO9PTO9PTO9PTOOPTO9PTO9PTOOPTO9PTO9PTO9PTOSPTO9PTWOKUFBQUFBQUFBRQUEFBQUEFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANC1FRUVFRUVFRUVFRUVFRUVFRUVFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENC1JSU1JSU1JSU1JSU1JSU1JSU1JSULJSULJSULd
SU1JSU1JSU1JSUL1JSULJSULIJSULJISDOPTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULINT
UINTUINTUINTUINTUINTUwOKVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV
FRUVFRUVFRUVEFQNCg==

SIDESY.

163

RequestDate:2008-09-28
ResponseDueDate:2008-10-13
FormNumber:UIB-290e

The State Pull Client Model Connector expects three command line arguments:

Table 56 — .Net State Pull Model Connector Command Line Arguments

Model Connector Argument

Definition

SI|EV This is the exchange that the file is
destined for:
SI — Separation Information
EV — Earnings Verification

Pull This is a Pull command

Data File This is the fully qualified path and name of

the data file that contains the flat file
structure of the Response Collection

Query.

To execute the Model Connector from the command line, type:

o StateClientConsole SI|EV pull Data_File_Name

Sample Model Connector arguments are:

o StateClientConsole Sl pull data/StateSIPullQuery.txt

where:

o Sl is the exchange the file is destined for

Example State Pull File

#SOAP Header Values

From:ST

To:Broker

PullCollection:3
#StateSOAPTransactionNumber:141690

#pull query values
#mandatory field, same as From value
StatePostalCode:ST

#foptional fields based on PullCollection value

#StateSOAPTransactionNumber:141690

BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00

SIDESY

164

BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.3.2 Employer Model Connector — .Net (C#)

This Model Connector class library and Windows console application demonstrates how an
employer/TPA connector can access the Ul SIDES Broker Web services using a Windows .Net
client application written in C#.

The Model Connector was originally developed in C# using Visual Studio 2005 for .Net
Framework 2.0 with .Net 3.0 runtime components and WCF. The current version of the software
was refactored and updated for Visual Studio Express 2010, C# Edition.

In order to open the sample application in Visual Studio, the following system requirements must
be met:

e Visual Studio Express 2010 or later, C# Edition.
e Microsoft Windows SDK for .Net Framework 3.0 or later

7.2.3.2.1 Sample Folders and Files

Root folder: sides-employer-client-wcf

e ./EmployerClient.sin

o Visual Studio Express 2010 solution file. Double click to open Model Connector
projects inside Visual Studio.

o Solution contains two projects: EmployerClient, a class library project that
implements functionality for calling Broker Web services, and
EmployerClientConsole, a Windows Console application project which wraps
EmployerClient class library to provide access to its functionality via command
prompt.

e /EmployerClient.csproj
o Visual Studio Express 2010 C# Project file for EmployerClient class library.
Produces EmployerClient.dll executable class library.
e /EmployerClient.cs, ./EVEmployerClient.cs
o C# source code file — main source code file for EmployerClient class library.
e Jutil/XmlSerializerUtils.cs
o C# source code file containing static utility methods for reading/writing XML
files using XmlSerializer.
e /util/DataFileReader.cs, ./util/DataFileWriter.cs
o C# source code files for the data file reader and writer
e _util/ClientUtils.cs
o C# source code file for the client utilities package
e ./Service References/EmployerBroker.cs, ./Service References/EVEmployerBroker.cs

o C# source code file containing the WCF Web service client implementation for

Employer Broker Web services. Generated by ServiceModel Metadata Utility

SIDESY 165

Tool (Svcutil.exe) Windows SDK tool from EmployerBroker.wsdl file and
referenced XSD (XML Schema) files.
e ./Service References/EmployerBroker.map, ./Service References/EVEmployerBroker.map
o Visual Studio file generated using “Add Service Reference” tool. Maps Test
Broker Web services URL to generated EmployerBroker.cs interfaces.
e ./App.config
o Main application configuration file, becomes EmployerClient.dll.config when
project is built.
e ./gen_svc_ref.bat
o Windows shell scripts to generate ./Service References/EmployerBroker.cs WCF
client code for Employer Broker Web services using Svcutil.exe Windows SDK
tool
e /EmployerClientConsole
o Contains console interface wrapper C# project files for EmployerClientConsole, a
Windows console application project which provides command-line interface for
the EmployerClient class library
e /EmployerClientConsole/EmployerClientConsole.csproj
o EmployerClientConsole C# Windows console application project file. Part of
EmployerClient.sIn solution.
e /EmployerClientConsole/EmployerClientConsole.csproj
o EmployerClientConsole source code file. Parses command-line arguments and
calls method in EmployerClient.dll
e /EmployerClientConsole/App.config
o Console interface application configuration file, copy of ./App.config. Becomes
EmployerClientConsole.exe.config in output binaries.
o Jlib
o Contains log4net.dll class library — Apache Log4Net open-source logging library
e ./data
o Contains EmployerBroker.wsdl, XSD XML schema files referenced in the WSDL
file, sample Separation Responses and Pull query XML files.

e /bin, ./obj
o Build and debugging artifact destination folders for compiled application and
DLL files.

o ./ REDACTED
7.2.3.2.2 Run Time Configuration

The Model Connector has runtime configuration parameters that allow the employer/TPA to
setup its connector. These parameters are identified in the AppSettings section of the AppConfig
file. In Visual Studio, at development time, this file is named ./App.config (for
EmployerBroker.dll) and ./EmployerClientConsole/App.config (for console interface). All
versions of this file have identical content. The keys used by the runtime configuration are
detailed below.

Table 57 - AppSettings options

SIDESY

166

Key Name Applies To | Definition

debugLogFilePath Post and Pull | The fully qualified location of the debug log file; it
contains all the information in all the log files plus
detailed information on the state of the Model
Connectors workings.

resultsLogFilePath Post and Pull | The fully qualified location of the results log file; it
contains all the information with the results from the
call to the Broker.

brptLogFilePath Post and Pull | The fully qualified location of the brpt log file; it
contains all the information with the results from the
BRPT.

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the requests received
in PDF form with all of the attachments decoded and
stored in the same directory

writeRequestsAsPDF Pull A boolean value that is “true” if the requests should
be printed out as the PDF and “false” otherwise.
requestFlatFilePath Pull The fully qualified location of the flat file containing

the Request information; it will contain all the
requests received in flat file format with all of the
attachments still encoded

writeRequestsAsFlatFile | Pull A boolean value that is “true” if the requests should
be written in the flat file format and “false”
otherwise.

pullAliFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2
and “false” if the connector wants to make the call
repeatedly (so as to allow the connector more
control).

7.2.3.2.3 Web Services Configuration

Configuration parameters such as Broker Web services URL and REDACTED settings are
located in the EmployerClient.dll.config (if only EmployerClient.dll is used), as well as in
EmployerClientConsole.exe.config if the command-line interface is used. In Visual Studio at
development time this file is named ./App.config (for EmployerBroker.dll) and
JEmployerClientConsole/App.config (for console interface). All versions of this file have
identical content.

Notable configuration settings are:
e address attribute of the endpoint element: determines the Broker Web services URL used

by the client. By default, Test Broker Web services URL is used: <endpoint address="
https:// REDACTED” .../>

SIDESY

167

e httpTransport or httpsTransport child elements of binding element: one of these elements
must be present, and must reflect the URL type in endpoint address attribute as described
above. Use <httpTransport/> for non-secure Web service URL like
http://localhost:8080/sides-trunk/ws, and <httpsTransport
authenticationScheme="Negotiate" maxReceivedMessageSize="10000000"/> for secure
URLs. httpsTransmport element is enabled by default to correspond to the secure Test
Broker URL (https:// REDACTED)

e findValue REDACTED
e findValue REDACTED

In order to be able to run this Model Connector, you must first install REDACTED

7.2.3.2.4 Build and Execution

To build Model Connector executables, run “Build->Rebuild Solution” from Visual Studio
menu. The EmployerClientConsole project is configured as the startup project, so if you select
Debug->Start Debugging from Visual Studio menu,
org.uisides.client.employer.EmployerClientConsole’s main() method will be invoked, defined in
StateClientConsole/StateClientConsole.cs. Since the method expects command-line arguments,
the arguments can be specified by right-clicking the StateClientConsole project node inside
Solution Explorer, then selecting Properties. In the properties page that opens, select the Debug
tab and type the parameters in the “Command line arguments” field.

The command-line interface expects the following types of arguments.
For Employer Post, the arguments are:

EmployerClientConsole post SI|[EV From To EmployerTPARequestFileGUID payloadFileName

Table 58 — .Net (C#) Employer Post Model Connector Command Line Arguments

Model connector Argument Definition
Post The operation name indicating Employer Post
SI|EV This is the exchange that the file is destined for:

SI — Separation Information
EV — Earnings Verification

From The value of the “From” SOAP header, which is the unique
ID of the Employer as defined by the Broker admin, for

SIDESY

168

Model connector Argument

Definition

example “BR999999999” for Employer Test endpoint

To

The value of the “To” SOAP header, the unique ID of the
destination State as defined by the Broker admin, for
example “ST” for State Test endpoint

EmployerTPAResponseFileGUID

The value of the “EmployerTPAResponseFileGUID”
SOAP header, for example
“12345678901234567890123456789012”

payloadFileName

The path to the XML file with
EmployerTPASeparationResponseCollection as the root
element

Here is an example command for Employer Test endpoint posting/sending data in
data/EmpPost.xml file to State Test endpoint (ST):

EmployerClientConsole post S| BR999999999 ST
12345678901234567890123456789012 data\EmpPost.xml

The Employer client will send the content of data\EmpPost.xml in a properly secured SOAP

message with specified header values, and will print out the response payload from Broker (an
acknowledgment) along with any response SOAP header values. The response to the example
command should look like this (in this case Broker rejected the only response since it couldn’t

find a matching request):

2010-07-07 19:37:11,718
Broker

2010-07-07 19:37:11,718
BR999999999

2010-07-07 19:37:11,718

2010-07-07 19:37:11,718
header: 2

[1] DEBUG [(null)] - Response From header:

[1] DEBUG [(null)] - Response To header:

[1] DEBUG [(null)] - Response
EmployerTPAResponseFileGUID header: 123456778901234567890123456789012

[1] DEBUG [(null)] - Response MessageCode

[1] DEBUG [(null)] - Response: <?xml

2010-07-07 19:37:11,875
version="1.0"7?2>

<EmployerTPASeparationResponseCollectionAcknowledgement
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<EmployerTPAResponseFileGUID xmlns="https:// REDACTED

/schemas">123456778901234567890123456789012</EmployerTPAResponseFileGUI

D>

<FailedSeparationResponse xmlns="https:// REDACTED /schemas">

<StateRequestRecordGUID>c755d30ed7dd4662bc0452e9050c00cd</StateRequestR

ecordGUID>

<BrokerRecordTransactionNumber>27550</BrokerRecordTransactionNumber>

<ErrorOccurrence>

<ErrorCode>210</ErrorCode>
<ErrorMessage>Business Rule violation - There is no matching

Claim Request record with fields matching Al to Bl, A2 to B2, A3 to B3,

SIDESY

169

A4 to B4, the StateRequestRecordGUID, and the
BrokerRecordTransactionNumber.</ErrorMessage>

</ErrorOccurrence>

</FailedSeparationResponse>

<NumberOfResponseRecordsReceived xmlns="https:// REDACTED
/schemas">1</NumberOfResponseRecordsReceived>
<NumberOfResponseRecordsInError xmlns="https:// REDACTED
/schemas">1</NumberOfResponseRecordsInError>
<DateStartedReceivingTransmission xmlns="https:// REDACTED
/schemas">2010-07-07T19:37:09.343-
05:00</DateStartedReceivingTransmission>
<DateFinishedReceivingTransmission xmlns="https:// REDACTED
/schemas">2010-07-07T19:37:11.557-
05:00</DateFinishedReceivingTransmission>
</EmployerTPASeparationResponseCollectionAcknowledgement>
2010-07-07 19:37:11,876 [1] DEBUG [(null)] - Press any key to exit.

For Employer Pull, the arguments are:

EmployerClientConsole pull SI|EV
[employerSoapTnNumber]

From To pullCollection payloadFileName

Table 59 — .Net (C#) Employer Pull Model Connector Command Line Arguments

Model connector Definition
Argument

Pull The operation name indicating Employer Pull

SI|EV This is the exchange that the file is destined for:
S| — Separation Information
EV — Earnings Verification

From The value of the “From” SOAP header, which is the unique
ID of the Employer as defined by the Broker admin, for
example “BR999999999” for Employer Test endpoint

To The value of the “To” SOAP header, which is always
“Broker” for pull operations

pullCollection The value of the “PullCollection” SOAP header indicating

type of pull, one of: 1,2 or 3

payloadFileName

The path to the XML file with
EmployerTPASeparationRequestCollectionQuery as the root
element

employerSoapTnNumber
(optional)

The value of the “EmployerTPASOAPTransactionNumber”
SOAP header. Only required if the pullCollection parameter
is 2 (re-pull by transaction number) or 3 (re-pull by date
range)

Here is an example command for Employer Test endpoint pulling any staged responses (regular
pull, pullCollection = 1) based on query parameters in data/EmployerPullQuery.xml:

SIDESY

170

EmployerClientConsole pull SI ST Broker 1 data\EmployerPullQuery.xml

The Employer client will send the content of data\EmployerPullQuery.xml in a properly secured
SOAP message with specified header values, and will print out the response payload from
Broker (a collection of requests if any) along with any response SOAP header values. The client
will then print out and send and acknowledgement to Broker to acknowledge pulled responses.
The response to the example command should look like this (an empty requests collection was
pulled in this case):

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response From header:
Broker

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response To header:
BR999999999

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response
EmployerTPASOAPTransactionNumber header: 48306

2010-07-07 19:45:14,001 [1] DEBUG [(null)] - Response

NextEmployerTPASOAPTransactionNumber header:

2010-07-07 19:45:14,002 [1] DEBUG [(null)] - Response MessageCode
header: 2

2010-07-07 19:45:14,203 [1] DEBUG [(null)] - Response: <?xml
version="1.0"7?>

<EmployerTPASeparationRequestCollection
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" />

2010-07-07 19:45:14,448 [1] DEBUG [(null)] - Sent acknowledgment: <?xml
version="1.0"7?>
<EmployerTPASeparationRequestCollectionAcknowledgement
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema">

<EmployerTPASOAPTransmissionNumber xmlns="https:// REDACTED
/schemas">48306</EmployerTPASOAPTransmissionNumber>

<NumberOfRequestRecordsReceived xmlns="https:// REDACTED
/schemas">0</NumberOfRequestRecordsReceived>

<NumberOfRequestRecordsInError xmlns="https:// REDACTED
/schemas">0</NumberOfRequestRecordsInError>

<DateStartedReceivingTransmission xmlns="https:// REDACTED
/schemas">0001-01-01T00:00:00</DateStartedReceivingTransmission>

<DateFinishedReceivingTransmission xmlns="https:// REDACTED
/schemas">0001-01-01T00:00:00</DateFinishedReceivingTransmission>
</EmployerTPASeparationRequestCollectionAcknowledgement>
2010-07-07 19:45:14,452 [1] DEBUG [(null)] - Press any key to exit.

7.2.3.2.4.1 EmployerClientConsole with ASCI| file

This file implements the employer/TPA Post and the employer/TPA Pull/Pull Acknowledgment
Web service calls that read ASCII files. See Figure 1 and Figure 2.

The EmployerClientConsole Model Connector reads message payload content from ASCII flat

files in the designated folder, sends it to the test SIDES Broker Web services URL, and logs the
Broker's response to the console/log files.

SIDESY.

171

The Employer/TPA Post with ASCII File Model Connector expects three command line
arguments:

Table 60 — .Net Employer/TPA Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition
SI|EV This is the exchange that the file is
destined for:
SI — Separation Information
EV — Earnings Verification
Post The Post command.
Data File This is the fully qualified path and name of
the data file that contains the flat file
structure of the Separation Response(s).

To execute the Model Connector from the command line, type:
o EmployerClientConsole SI|EV post Data_File_Name
Sample Model Connector arguments are:
o EmployerClientConsole Sl post data/EmployerSIPost.txt
where:
o Sl is the exchange the file is destined for

Example Employer Response File

#SOAP Headers

To:ST

From:BR999999999
FileGuid:12345678901234567890123456789014

StateRequestRecordGUID:30000000000000000000000000004003
BrokerRecordTransactionNumber:2013889
SSN:560348477

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620
StateEmployerAccountNbr:0065560
CorrectedEmployerName:J C Penny
CorrectedStateEmployerAccountNbr:0123456789
CorrectedFEIN:987654321

OtherSSN:660348477
ClaimantNameWorkedAsForEmployer:Andy Wilson
ClaimantJobTitle:Customer Service Associate
SeasonalEmploymentInd:N
EmployerReportedClaimantFirstDayofWork:2007-10-11
EmployerReportedClaimantLastDayofWork:2007-10-14

SIDESY 172

EffectiveSeparationDate:2007-10-14
TotalEarnedWagesNeededInd:3

TotalWeeksWorkedNeededInd: 3

AverageWeeklyWage:125.00

EmployerSepReasonCode: 3

ReturnToWorkInd:N

WorkingAllAvailableHoursInd:N
NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason
LaborDisputeTypelInd:L

#Remuneration
RemunerationTypeCode: 3
RemunerationAmountPerPeriod:999.99
RemunerationPeriodFrequencyCode:B
DateRemunerationIssued:2007-10-15
EmployerAllocationInd:N
AllocationBeginDate:2007-10-15
AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40
MandatoryRetirementInd:N
MandatoryPension:N
ContributoryorNotContributoryClaimantInd:N
ClaimantPensionContributionPercent:100
DischargeReasonCode: 3
FinalIncidentReason:FinalIncidentReason
FinalIncidentDate:2007-10-13
ViolateCompanyPolicyInd:N
DischargePolicyAwareInd:N
DischargePolicyAwareExplanationCode:V

#PriorIncidentOccurrence
PriorIncidentDate:2007-10-10
PriorIncidentReason:None
PriorIncidentWarningInd:Y
PriorIncidentWarningDate:2007-10-10
PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson
WhoDischargedTitle:Customer Service Associate
VoluntarySepReasonCode:3
HiringAgreementChangesCode:3
HiringAgreementChangesComments:HiringAgreementChangesComments
ClaimantActionsToAvoidQuitInd:N
ContinuingWorkAvailableInd:N
PreparerTypeCode:T

PreparerCompanyName:J C Penny
PreparerTelephoneNumberPlusExt:9724312108
PreparerContactName:Ed A Jones
PreparerTitle:Project Manager
PreparerFaxNbr:9725312108
PreparerEmailAddress:edjones@jcpenneytest.com

The Employer/TPA Pull Data File Model Connector expects three command line arguments:

SIDESY 173

Table 61 — .Net Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument

Definition

SI|EV

This is the exchange that the file is
destined for:

SI — Separation Information

EV — Earnings Verification

Pull

The Pull command

Data File

This is the fully qualified path and name of
the data file that contains the flat file
structure of the Request Collection Query.

To execute the Model Connector from the command line, type:

o EmployerClientConsole SI|EV pull Data_File_Name

Sample Model Connector arguments are:

o EmployerClientConsole SI pull data/StateSIPullQuery.txt

where:

o Sl is the exchange the file is destined for

Example Employer/TPA Pull File

#SOAP Header Values

From:BR0O00000003

To:Broker

PullCollection:3
EmployerTPASOAPTransactionNumber:141690

#pull

query values

#mandatory field, same as From value
UniqueID:BRO00000003

#optional fields based on PullCollection value
EmployerTPASOAPTransactionNumber:141690
BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00
BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

724

7.24.1

Model Connector — JAX-WS

State Model Connector — JAX-WS

This sample Model Connector demonstrates how a State can access the Ul SIDES Broker Web
services using JAX-WS libraries.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on jdk 1.4 and

Java 6.

SIDESY

174

The following main libraries are used (parts of Sun Microsystems Metro v1.4 release):
e JAX-WSRI2.1.4.1
e JAXBRI21.7.1

For convenience, this sample includes all necessary Eclipse project config files and can be
imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.4.1.1 Sample Folders and Files

Root folder: sides-state-client-jax-ws
e ./build.xml

Ant build file (requires Apache Ant 1.7.1 or later)
o Run “ant generate-jaxws-client” to generate JAX-WS client Java beans from
WSDL (creates src/org/uisides/client/state/generated classes)
o Run "ant build" to compile

e ./src

Contains:
o Java source code
o Log4j config file (log4j.properties)
o State-ws-client-config.xml — run time settings
o client-security-env.properties (JAX-WS)

Aib

Contains required library jar files. All libraries used are open-source Apache LGPL-style

libraries which can be freely distributed.

Jschemas —
Contains Ul sIDES XML schema files and State WSDL file

Jdata
Contains sample payload xml data files for State Post (StatePost.xml)

Jbin
Build destination folder for compiled Java class files.

7.2.4.1.2 RunTime Configuration

The Model Connector has runtime configuration parameters that allow the state to setup its
connector. The configuration is specified in a config xml file. The bean that specifies these

SIDESY

175

parameters is the configParams bean. All Java JAX-WS Application Model Connector classes
use the same configuration file, state-ws-emulator-config.xml.

Table 62 - ConfigParam options

Parameter Name Applies To | Definition

debugLogFilePath Post and Pull | The fully qualified location of the debug log file; it
contains all the information in all the log files plus
detailed information on the state of the Model
Connectors workings.

resultsLogFilePath Post and Pull | The fully qualified location of the results log file; it
contains all the information with the results from the
call to the Broker.

brptLogFilePath Post and Pull | The fully qualified location of the brpt log file; it
contains all the information with the results from the
BRPT.

pinLogFilePath Post The fully qualified location of the pin log file; it

contains all the information on the new pin created if
the createPin config parameter is set to true

pdfFilePath Pull The fully qualified location of the PDF file and
attachments; it will contain all the response received
in PDF form with all of the attachments decoded and
stored in the same directory

writeResponsesAsPDF Pull A boolean value that is “true” if the responses should
be printed out as the PDF and “false” otherwise.
responseFlatFilePath Pull The fully qualified location of the flat file containing

the Response information; it will contain all the
responses received in flat file format with all of the
attachments still encoded

writeResponsesAsFlatFile | Pull A boolean value that is “true” if the responses should
be written in the flat file format and “false”
otherwise.

createPin Post A boolean value that is “true” if the system is
directed to create the PIN for the request and “false”
otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants
the system to pull all files until the message code = 2
and “false” if the connector wants to make the call
repeatedly (so as to allow the connector more
control).

7.2.4.1.3 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the
client-security-env.properties file.

7.2.4.1‘.4 Execution
SIDESY 176

This Model Connector contains four top-level Java class with a main() method:

StatePostClient
StatePostClientDataFile
StatePullClient

o]
(@]
o]
o StatePullClientDataFile

These files implement the State Post and State Pull respectively using JAX-WS.

7.2.4.1.4.1 StatePostClient/StatePullClient

The StatePostClient reads Separation Request SOAP message payload content from XML file in
the ./data folder, sends it to the test SIDES Broker Web services URL, and logs Broker's

responses to the console.

The Model Connector expects five or seven command line arguments:

Table 63 — JAX-WS State Post Model Connector Command Line Arguments

Model connector Argument

Definition

SI|EV

This is the exchange that the file is
destined for:

Sl — Separation Information

EV — Earnings Verification

"FROM" SOAP header

This is the unique id of the State that is
sending the file.

"TO" SOAP header

This is the unique id of the Employer/TPA
that the file is destined for.

"StateRequestFileGUID™ SOAP header

This is the State Request File GUID.

The payload XML source file

The XML file that contains the payload for
the call.

SEIN SOAP header (optional)

SEIN value if sending to SEW
employer/TPA

PIN SOAP header (optional)

PIN value if sending to SEW
employer/TPA

To execute the State Post Model Connector from the command line, type:

o java—cp <classpath> org.uisides.client.state.StatePostClient SI[EV FROM TO
StateRequestFileGUID Payload XML _File_Name [SEIN PIN]

Sample Model Connector arguments are:

o java—cp <classpath> org.uisides.client.state.StatePostClient SI ST BR999999999
12345678901234567890123456789012 data/StatePost.xml

SIDESY

177

where:

O
o ST is the State Test unique id
O
@)

Sl is the exchange to file is destined for

BR999999999 is the unique id for Employer Test Ul SIDES endpoint
12345678901234567890123456789012 is a test StateRequestFileGUID.

The StatePullClient reads State pull query SOAP message payload content from XML file in the
Jdata folder, sends it to the test SIDES Broker Web services URL, logs Broker's responses to the
console, then prepares and sends Broker the acknowledgement of received pull responses.

The Model Connector expects five or six command line arguments:

Table 64 — JAX-WS State Pull Model Connector Command Line Arguments

Model connector Argument

Definition

SI|EV

This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

"FROM" SOAP header

This is the unique id of the State that is
sending the pull query.

"TO" SOAP header

Always “Broker” for Pull requests

“PullCollection” SOAP header

1 for regular pull, 2 for re-pull by
transmission number, 3 for re-pull by date
range

The payload XML source file

The XML file that contains the payload for
the call.

StateSOAPTransactionNumber (optional)

The value of the
“StateSOAPTransactionNumber” SOAP
header. Only required if the pullCollection
parameter is 2 (re-pull by transaction
number) or 3 (re-pull by date range)

To execute the State Pull Model Connector from the command line, type:

o java—cp <classpath> org.uisides.client.state.StatePullClient SI|EV FROM TO
PullCollection Payload XML _File_Name [StateSOAPTransactionNumber]

Sample Model Connector arguments are:

o java—cp <classpath> org.uisides.client.state.StatePostClient SI ST Broker 1

data/StatePullQuery.xml

where:

o Sl is the exchange that the file is destined for

SIDESY

178

o ST is the State Test unique id
o Broker is the “To” value for all Pull requests
o 1listhe PullCollection value indicating a regular pull

7.2.4.1.4.2 StatePostClientDataFile/StatePullClientDataFile

These files implement the State Post and the State Pull/Pull Acknowledgment Web service calls
respectively that read ASCII files. See Figure 1 and Figure 2.

The StatePostClientDateFile/StatePullClientDataFile Model Connectors read message payload
content from ASCI|I flat files in the designated folder, send it to the test SIDES Broker Web
services URL, and log Broker's response to the console.

The State Post Data File Model Connector expects two command line arguments:

Table 65 — JAX-WS State Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition
SI|EV This is the exchange that the file is
destined for:
S| — Separation Information
EV — Earnings Verification
Data File This is the fully qualified path and name of
the data file that contains the flat file
structure of the Separation Request(s).

To execute the Model Connector from the command line, type:
o java org.uisides.client.state.StatePostClientDataFile SI|EV Data_File_Name
Sample Model Connector arguments are:
o java org.uisides.client.state.StatePostClientDataFile SI data/StateSIPost.txt
where:
o Sl is the exchange the file is destined for

Example State Request File

#SOAP Header Values

To:BR999999999

From:ST
FileGuid:01234567890123456789012345678901

StateRequestRecordGUID:c755d30ed7dd4662bc0452e9050c00df
SSN:000989494

SIDESY 179

ClaimEffectiveDate:2008-09-28
ClaimNumber:0
StateEmployerAccountNbr:342424001
EmployerName:ELDORA ENTERPRISES LTD LIABILITY CO
FEIN:841173055

TypeofEmployerCode:1

TypeofClaimCode:1
BenefitYearBeginDate:2008-09-28
RequestingStateAbbreviation:CO
UIOfficeName:CO CDLE
UIOfficePhone:3033189055
UIOfficeFax:3033189014

ClaimantLastName :WHEELOCK
ClaimantFirstName:PHILIPPE
ClaimantMiddleInitial:M
ClaimantJobTitle:SKI PATROL
ClaimantReportedFirstDayofWork:2005-11-25
ClaimantReportedLastDayofWork:2008-04-10
WagesWeeksNeededCode : NA
ClaimantSepReasonCode:1

UniqueAttachmentId:01

DescriptionofAttachmentCode:1

TypeofDocument:test-file.txt

ActionableAttachment:3

AttachmentSize:2000
AttachmentData:QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFEFBQU
FBDQOpCQkJCQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICOkICQkICQkICOkICQkICOkICDOP
DQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDDQPERERE
REQNCkKkVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk
ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkYNCkdHROAHROAHROAHROJHROAHROd
HROJHROAHROAHROAHROdAHROAHROAHROAHROAHROCNCKkhISEhRISEhISEhRISEhISERISERISEhISERhT
SEhISEhISEhISEhISEhISEhISEhRISEgNCk1JSU1JSU1JSULJSULJSULJSULIJSULISULJSULJSULIS
U1JSULJSULJSULJSULJISULJISULJISULJISULISULIDQPKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk
PKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSgOKS0tLSOtLSOtLSOtLSOtLSOtLSOtLSOtLS0tLS0tLS0t
LSOtLSOtLSOtLSOtLSOtLSWOKTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTExXM
TEXMTEXMTEXMTEWNCKINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUONCKSOT
k50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk4NCk9PTO9PTO9PTO
9PTOSPTO9PTOSPTOOPTOOPTOOPTO9PTOSPTO9PTOOPTOOPTOOPTO8SNCIBQUFBQUFBQUFBQUFBQUER
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQUEFBQUFBQUFBODOpRUVFRUVFRUVFRUVFRUVFRUVEFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSU1JSU1JSU1JSUL1JSULJSULJSULISULJSULISU
1JSU1JSU1JSULJSULJSULJSULJSUgOKUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUL
NTUINTUINTUINTUINTUIMNCI1RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFER
UVFRUVFRUVFRUDQpBQUFBQUFBQUEFBQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQUEFBQUFBQUFBQUEBQUEB
QUENCkJCQkJCQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQKINC
kNDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQOMNCkRERE
RERAOKRUVFRUVFRUVFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQOKRkZGRkZGRkZGRkZGRkZG
RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRgOKROAHROAHROAHROAHROAHROJHR
0dHROAHROAHROAHROAHROAHROAHROAHROAHROAHRWOKSERISEhISEhRISEhISERISEhISEhRISEhISE
hISEhISEhISEhRISEhISEhRISEhISEhRISAOKSULJSUL1JSULlJSULJSULJSULJSULJSULJSULJSULISUL
JSULJSULJSULJSULJISULJISULJISULJISULJISULISUKNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK
SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLSO0tLSOtLSOtLSOtLSO0tLSO0tLSOtLSOtLSOtLSOtLS
0tLSOtLSOtLSOtLSO0tLSOtLDOQPMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTE
XMTEXMTEXMTEXMTAOKTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTQOKTkS

SIDESY.

180

OTk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50TkS50Tg0KTOSPTO9PTO9P
TO9PTOOPTOOPTO9PTOOPTOSPTOOPTO9PTOOPTOSPTO9PTO9PTOOPTWOKUFBQUFBQUFBQUEFBQUFBQU
FBOQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQUFBQUFBQUFBQUFANC1FRUVFRUVFRUVFRUVFRUVEFRUVEFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENC1JSU1JSU1JSU1JSUL1JSULJSULJSULISULISULT
SU1JSULJSULJSUL1JSUL1JSULJSULISDOQPTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINT
UINTUINTUINTUINTUINTUwOKVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV
FRUVFRUVFRUVFQNCg==

UniqueAttachmentId:02

DescriptionofAttachmentCode:1

TypeofDocument:test-file2.txt

ActionableAttachment:3

AttachmentSize:2000

AttachmentData: QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQU
FBDQPpCQkJCQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICDQOP
DQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDDQPERERE
REQNCKVFRUVFRUVFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUUNCkZGRkZGRkZGRkZGRkZGRk
ZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRKYNCkdHROAHROJHROJHROAHROJHROd
HROAHROAHROJHROJHROAHROAHROAHROAHROAHROCNCKhISEhISEhISEhISEhISEhISEhISEhISEQT
SEhISEhISEhRISEhISEhISEhRISEhISEgNCk1JSU1JSULJSULJSULJSULISULJSULJSULJISULISULTS
U1JSU1JSU1JSU1JSULJSULJISULJISULISULISULIDQPKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSk
PKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSgOKS0tLSOtLSOtLSOtLSOtLSOtLSOtLSOtLS0tLS0tLS0t
LSOtLSOtLSOtLSOtLSOtLSWOKTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTExM
TEXMTEXMTEXMTEWNCKINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUONCkKS50T
k50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk4NCkOPTO9PTO9PTO
9PTO9PTOSPTO9PTO9PTO9PTOOPTO9PTO9PTOOPTOOPTO9PTO9PTO8NC1IBQUFBQUFBQUFBQUFRBRQUFEB
QUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBOQDQPpRUVFRUVFRUVFRUVFRUVFRUVEFRUVER
UVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRDQpSU1JSU1JSU1JSULJSULJSULJSULJSULISULISU
1JSU1JSU1JSULJSULJSULJSULJSUgOKUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULINTUL
NTUINTUINTUINTUINTUIMNCI1RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFR
UVFRUVFRUVFRUDQpBQUFBQUFBQUEFBQUFBQUFBQUFBQUFBQUFBQUFBQUEFBQUEFBQUFBQUFBQUEBQUEB
QUENCkJCQkJCQkJICQkJICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQkICQKINC
kNDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQONDQOMNCKRERE
RERAOKRUVFRUVFRUVFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRQOKRkZGRkZGRkZGRkZGRkZG
RkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRgOKROAHROAHROAHROAHROAHROJHR
0dHROJHROAHROAHROJHROJHROAHROAHROAHROAHRWOKSEhISEhISEhISEhISEhISERISEhISEhISE
hISEhISEhISEhISEhISEhISEhISEhISAOKSU1JSU1JSUL1JSUL1JSULJSULJSULJSULJSULJSULJSUL
JSULJSU1JSU1JSULJSULJISULJISULISULISULISUKNCkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpK
SkpKSkpKSkpKSkpKSkpKSkpKSkpKSkpKDQpLSO0tLS0tLS0tLSOtLS0tLSOtLSOtLSOtLSOtLS0tLS
OtLSOtLSOtLSOtLSOtLSOtLDOPMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTEXMTE
XMTEXMTEXMTEXMTAOKTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTQOKTkS
OTk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tk50Tg0KTO9PTO9PTO9P
TOOPTO9PTO9PTO9PTOOPTO9PTO9PTOOPTO9PTO9PTO9PTOSPTO9PTWOKUFBQUFBQUFBRQUEFBQUEFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFANC1FRUVFRUVFRUVFRUVFRUVFRUVFRUV
FRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVENC1JSU1JSU1JSU1JSU1JSU1JSU1JSULJSULJSULd
SU1JSU1JSU1JSUL1JSULJSULJSULJSDQPTUINTUINTUINTUINTUINTUINTUINTUINTUINTUINTULINT
UINTUINTUINTUINTUINTUwOKVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUV
FRUVFRUVFRUVEFQNCg==

RequestDate:2008-09-28

ResponseDueDate:2008-10-13
FormNumber:UIB-290e

The State Pull Data File Model Connector expects two command line arguments:
SIDESVa 181

Table 66 — JAX-WS State Pull Model Connector Command Line Arguments

Model Connector Argument

Definition

SI|EV

This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

Data File

This is the fully qualified path and name of
the data file that contains the flat file
structure of the Response Collection

Query.

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.StatePullClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.StatePullClientDataFile SI data/StateSIPullQuery.txt

where:

o Sl is the exchange the file is destined for

Example State Pull File

#SOAP Header Values

From:ST

To:Broker

PullCollection:3
StateSOAPTransactionNumber:141690

#pull

query values

#mandatory field, same as From value
StatePostalCode:ST

#optional fields based on PullCollection value
StateSOAPTransactionNumber:141690
BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00
BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.4.2 Employer/TPA Model Connector — JAX-WS

This sample Model Connector demonstrates how an employer/TPA can access the Ul SIDES
Broker Web services using JAX-WS libraries.

The Model Connector was developed on JDK 1.5 (Java 5), but should also run on jdk 1.4 and

Java 6.

SIDESY

182

The following main libraries are used (parts of Sun Microsystems Metro v1.4 release):
e JAX-WSRI2.1.4.1
e JAXBRI21.7.1

For convenience, this sample includes all necessary Eclipse project config files and can be
imported into an existing Eclipse IDE workspace. Eclipse 3.5 (Galileo) or later is required.

7.2.4.2.1 Sample Folders and Files

Root folder: sides-employer-client-jax-ws

e /build.xml

Ant build file (requires Apache Ant 1.7.1 or later)

o

Run “ant generate-jaxws-client” to generate JAX-WS client Java beans from
WSDL (creates src/org/uisides/client/state/generated classes)

o Run "ant build" to compile
o ./src
Contains:
o Java source code
o Log4j config file (log4j.properties)
o employer-ws-client-config.xml — the run time settings
o client-security-env.properties (JAX-WS security config file)
e Jlib

Contains required library jar files. All libraries used are open-source Apache LGPL-style

libraries which can be freely distributed.

e /schemas —

Contains Ul sIDEs XML schema files and Employer/TPA WSDL file

e ./data

Contains sample payload xml data files for Employer/TPA Post (EmpPost.xml)

e /bin

Build destination folder for compiled Java class files.

7.2.4.2.2 Run Time Configuration

SIDESY

183

The Model Connector has runtime configuration parameters that allow the employer/TPA to
setup its connector. The configuration is specified in a config xml file. The bean that specifies
these parameters is the configParams bean. All Java Application Model Connector classes use
the same configuration file, employer-ws-emulator-config.xml.

Table 67 - ConfigParam options

Parameter Name Applies To | Definition

debugLogFilePath Post and Pull | The fully qualified location of the debug log file; it
contains all the information in all the log files plus
detailed information on the state of the Model
Connectors workings.

resultsLogFilePath Post and Pull | The fully qualified location of the results log file; it
contains all the information with the results from the
call to the Broker.

brptLogFilePath Post and Pull | The fully qualified location of the brpt log file; it
contains all the information with the results from the
BRPT.

pdfFilePath Pull The fully qualified location of the PDF file and

attachments; it will contain all the requests received
in PDF form with all of the attachments decoded and
stored in the same directory

writeRequestsAsPDF Pull A boolean value that is “true” if the responses should
be printed out as the PDF and “false” otherwise.
requestFlatFilePath Pull The fully qualified location of the flat file containing

the Request information; it will contain all the
requests received in flat file format with all of the
attachments still encoded

writeRequestsAsFlatFile | Pull A boolean value that is “true” if the requests should
be written in the flat file format and “false”
otherwise.

pullAllFiles Pull A boolean value that is “true” if the connector wants

the system to pull all files until the message code = 2
and “false” if the connector wants to make the call
repeatedly (so as to allow the connector more
control).

7.2.4.2.3 Web Services Configuration

The URL of the SIDES Broker Web services and REDACTED configuration is specified in the
client-security-env.properties file.

7.2.4.2.4 Execution
This Model Connector contains four top-level Java classes with a main() method:

o EmployerPostClient

SIDESY 184

o EmployerPostClientDataFile
o EmployerPullClient
o EmployerPullClientDataFile

These files implement the employer/TPA Post and Pull operations respectively using JAX-WS.

724241

The Employer Post Model Connector reads Response SOAP message payload content from
XML file in the ./data folder, sends it to the test SIDES Broker Web services URL, and log

EmployerPostClient/EmployerPullClient

Broker's response to the console.

The Model Connector expects five command line arguments:

Table 68 — JAX-WS Employer Post Model Connector Command Line Arguments

Model connector Argument

Definition

SI|EV

This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

"FROM" SOAP header

This is the unique id of the Employer/TPA
that is sending the file.

"TO" SOAP header

This is the unique id of the State that the
file is destined for.

"EmployerTPAResponseFileGUID" SOAP
header

This is the Employer/TPA Response File
GUID.

The payload XML source file

The XML file that contains the payload for
the call.

To execute the Model Connector from the command line, type:

o java org.uisides.client.employer.EmployerPostClient SI|EV FROM TO

EmployerTPAResponseFileGUID Payload_XML_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.employer.EmployerPostClient SI BR999999999 ST

12345678901234567890123456789012 data/EmpPost.xml

where:

Sl is the exchange the file is destined for

o O O O

SIDESY

BR999999999 is the EmployerTest unique id
ST is the unique id for StateTest Ul SIDES endpoint
123456789012345678901234 is the EmployerTPAResponseFileGUID

185

The EmployerPullClient reads Employer pull query SOAP message payload content from XML
file in the ./data folder, sends it to the test SIDES Broker Web services URL, logs Broker's
responses to the console, then prepares and sends Broker the acknowledgement of received pull
responses.

The Model Connector expects five or six command line arguments:

Table 69 — JAX-WS Employer Pull Model Connector Command Line Arguments

Model connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

"FROM" SOAP header This is the unique id of the Employer that
is sending the pull query.

"TO" SOAP header Always “Broker” for Pull requests

“PullCollection” SOAP header 1 for regular pull, 2 for re-pull by
transmission number, 3 for re-pull by date
range

The payload XML source file The XML file that contains the payload for
the call.

EmployerTPASOAPTransactionNumber The value of the

(optional) “EmployerTPASOAPTransactionNumber”

SOAP header. Only required if the
pullCollection parameter is 2 (re-pull by
transaction number) or 3 (re-pull by date
range)

To execute the Employer Pull Model Connector from the command line, type:
o Jjava—cp <classpath> org.uisides.client.employer.EmployerPullClient SI|JEV FROM TO
PullCollection Payload_XML_File_Name [EmployerTPASOAPTransactionNumber]
Sample Model Connector arguments are:

o java—cp <classpath> org org.uisides.client.employer.EmployerPullClient SI
BR999999999 Broker 1 data/EmployerPullQuery.xml

where;

Sl is the exchange the file is destined for
BR999999999 is the Employer Test unique id
Broker is the “To” value for all Pull requests

1 is the PullCollection value indicating a regular pull

o O O O

SIDESY

186

7.2.4.2.4.2 EmployerPostClientDataFile/EmployerPullClientDataFile

These files implement the employer/TPA Post and the employer/TPA Pull/Pull Acknowledgment
Web service calls respectively that read ASCII files. See Figure 1 and Figure 2.

The EmployerPostClientDateFile/EmployerPullClientDataFile Model Connectors read message
payload content from ASCI|I flat files in the designated folder, send it to the test SIDES Broker
Web services URL, and log Broker's response to the console.

The Employer/TPA Post Data File Model Connector expects two command line arguments:

Table 70 — JAX-WS Employer/TPA Post Data File Model Connector Command Line Arguments

Model Connector Argument Definition

SI|EV This is the exchange that the file is
destined for:

S| — Separation Information

EV — Earnings Verification

Data File This is the fully qualified path and name of
the data file that contains the flat file
structure of the Separation Response(s).

To execute the Model Connector from the command line, type:
o java org.uisides.client.employer.EmployerPostClientDataFile SI|EV Data_File_Name
Sample Model Connector arguments are:
o java org.uisides.client.employer.EmployerPostClientDataFile SI data/EmployerSIPost.txt
where:
o Sl is the exchange the file is destined for

Example Employer Response File

#SOAP Headers

To:ST

From:BR999999999
FileGuid:12345678901234567890123456789014

StateRequestRecordGUID:30000000000000000000000000004003
BrokerRecordTransactionNumber:2013889

SSN:560348477

ClaimEffectiveDate:2007-06-04

ClaimNumber:388620

SIDESY

187

StateEmployerAccountNbr:0065560
CorrectedEmployerName:J C Penny
CorrectedStateEmployerAccountNbr:0123456789
CorrectedFEIN:987654321

OtherSSN:660348477
ClaimantNameWorkedAsForEmployer:Andy Wilson
ClaimantJobTitle:Customer Service Associate
SeasonalEmploymentInd:N
EmployerReportedClaimantFirstDayofWork:2007-10-11
EmployerReportedClaimantLastDayofWork:2007-10-14
EffectiveSeparationDate:2007-10-14
TotalEarnedWagesNeededInd:3
TotalWeeksWorkedNeededInd: 3
AverageWeeklyWage:125.00

EmployerSepReasonCode: 3

ReturnToWorkInd:N

WorkingAllAvailableHoursInd:N
NotWorkingAvailableHoursReason:NotWorkingAvailableHoursReason
LaborDisputeTypelInd:L

#Remuneration
RemunerationTypeCode:3
RemunerationAmountPerPeriod:999.99
RemunerationPeriodFrequencyCode:B
DateRemunerationIssued:2007-10-15
EmployerAllocationInd:N
AllocationBeginDate:2007-10-15
AllocationEndDate:2007-10-22

AverageNumberofHoursWorkedperWeek:40
MandatoryRetirementInd:N
MandatoryPension:N
ContributoryorNotContributoryClaimantInd:N
ClaimantPensionContributionPercent:100
DischargeReasonCode: 3
FinalIncidentReason:FinalIncidentReason
FinalIncidentDate:2007-10-13
ViolateCompanyPolicyInd:N
DischargePolicyAwareInd:N
DischargePolicyAwareExplanationCode:V

#PriorIncidentOccurrence
PriorIncidentDate:2007-10-10
PriorIncidentReason:None
PriorIncidentWarningInd:Y
PriorIncidentWarningDate:2007-10-10
PriorIncidentWarningDescription:Verbal

WhoDischargedName:Andy Wilson

WhoDischargedTitle:Customer Service Associate
VoluntarySepReasonCode:3

HiringAgreementChangesCode:3
HiringAgreementChangesComments:HiringAgreementChangesComments
ClaimantActionsToAvoidQuitInd:N

ContinuingWorkAvailableInd:N

PreparerTypeCode:T

SIDESY 188

PreparerCompanyName:J C Penny

PreparerTelephoneNumberPlusExt:9724312108

PreparerContactName:Ed A Jones
PreparerTitle:Project Manager
PreparerFaxNbr:9725312108

PreparerEmailAddress:edjones@jcpenneytest.com

The Employer/TPA Pull Data File Model Connector expects two command line arguments:

Table 71 — JAX-WS Employer/TPA Pull Model Connector Command Line Arguments

Model Connector Argument

Definition

SI|EV This is the exchange that the file is
destined for:
SI — Separation Information
EV — Earnings Verification

Data File This is the fully qualified path and name of

the data file that contains the flat file
structure of the Request Collection Query.

To execute the Model Connector from the command line, type:

o java org.uisides.client.state.EmployerPullClientDataFile SI|EV Data_File_Name

Sample Model Connector arguments are:

o java org.uisides.client.state.EmployerPullClientDataFile Sl data/StateSIPullQuery.txt

where:

o Sl is the exchange the file is destined for

Example Employer/TPA Pull File

#SOAP Header Values
From:BR0O00000003
To:Broker
PullCollection:3

EmployerTPASOAPTransactionNumber:141690

#pull query values
#mandatory field, same as From value
UniqueID:BRO00000003

#foptional fields based on PullCollection value

EmployerTPASOAPTransactionNumber:141690
BrokerRecordEffectiveDateFrom:2010-07-13T00:00:00
BrokerRecordEffectiveDateTo:2010-07-14T00:00:00

7.2.5 BRPT - Business Rule Processor Tool

SIDESY

189

There are two key data checks that enforce the quality of data transmitted in the SIDES system:
XSDs and Business Rules. The XSD validation is automatically provided by the J2EE or .Net
parser technology as part of the XML file generation and consumption process. However, the
SIDES data-related business rules require implementation via programming code and it is vital
that all connectors and the Broker implement these business rules precisely and correctly. The
purpose of the Business Rule Processor Tool is twofold:

e The Business Rule Processor Tool ensures a standard implementation and
interpretation of the SIDES business rules, not just for the current SIDES members,
but new participants in the future. For future participants, demonstrating the correct
implementation of the business rules is part of certifying their readiness to join
SIDES production operations.

e The Business Rule Processor Tool permits an Endpoint to test their business rule
programming code prior to connecting to the Broker. Uncovering errors during unit
test will be much less costly than discovering them during testing with the Broker.
Technically, the tool accepts a Data Transfer Object (“DTO”) or XML input and
returns the errors and associated codes that the Broker will provide without the need
to connect to the Broker. The tool has been developed in both .Net (C#) and Java 2

Platform, Enterprise Edition (“J2EE”) allowing all connectors to take advantage of it.

The Business Rule Processor Tool is a self contained jar file or a DLL (depending on the
language) that can be included in the connectors’ software project. It has exposed interfaces or
data transfer objects (DTOs) that a connector can invoke from within their code to test the
Broker business rules.

7.2.5.1 BRPT Interfaces

The Business Rule Processing Rule (BRPT) is accessed through twelve different methods, 3 for
Separation Information request, 3 for Separation Information response, 3 for Earnings
Verification request and 3 for Earnings Verification response, per language (.Net (C#) and Java).

The first way to access the BRPT is with an XML file. The connector can either have their
system write the XML to a file or the connector can build the file by hand with data out of its
system to verify the data’s integrity.

The second way to access the BRPT is with an XML Stream. This method allows the connector
to build the XML using their system in a form that it can use to send to the Broker but allows the
testing of the data to occur without having to have a working connection to the Broker.

The third way to access the BRPT is with a Data Transfer Object (DTO). This method allows
the connector to populate a DTO and verify the data meets SIDES specifications.
7.2.5.1.1 Java XML File

Table 72 — BRPT Java XML File

SIDESY

190

Method Name Parameters Description
processEarningVerificationRequests String PﬂxmssﬂueEanﬂngs
requestskilebath Verification Requests
contained in the File
at requestFilePath.
processEarningsVerificationResponses | String Process the Eamings

responsesFilePath

Verification
Responses contained
in the File at
responseFilePath.

processSeparationRequests String Process the Separation
requestskilePath Requests contained in
the File at
requestFilePath.
processSeparationResponses String Process the Separation

responsesFilePath

Responses contained
in the File at
responseFilePath.

7.2.5.1.2 Java XML Construct

Table 73 — BRPT Java XML Construct

Method Name

Parameters

Description

processEarningVerificationRequests

XMLStreamReader
requestsStreamReader

Process the Earnings
Verification Requests
contained within the
XMLStreamReader
requestStreamReader

processEarningsVerificationResponses

XMLStreamReader
responsesStreamReade
r

Process the Earnings
Verification
Responses contained
within
XMLStreamReader
responsesStreamRead
er.

processSeparationRequests

XMLStreamReader
requestsStreamReader

Process the
Separation Requests
contained within the

SIDESY

191

Method Name Parameters Description
XMLStreamReader
requestStreamReader.

processSeparationResponses XMLStreamReader Process the

responsesStreamReade
r

Separation Responses
contained within the

XMLStreamReader
responsesStreamRead
er.
7.2.5.1.3 Java Data Transfer Object
Table 74 — BRPT Java Data Transfer Object
Method Name Parameters Description

processEarningVerificationRequests

StateEarningsVerifi
cationRequestCollec
tion requests

Process the Earnings
Verification Requests
contained within the
requests Data
Transfer Object.

processEarningsVerificationResponses

EmployerTPAEarnings
VerificationCollect
ion responses

Process the Earnings
Verification

Responses contained
within the responses

Data Transfer Object.
processSeparationRequests StateSeparationRequ Process the
estCollection Separation Requests
requests

contained within the
requests Data
Transfer Object.

processSeparationResponses

EmployerTPASeparati
onResponseCollectio
n responses

Process the
Separation Responses
contained within the
responses Data
Transfer Object.

7.2.5.1.4 .Net (C#) XML File

SIDESY

192

Table 75 — BRPT .Net (C#) XML File

Method Name Parameters Description
processEarningVerificationRequests String ProcessthelEanﬂngs
requestsFilePath | verification Requests
contained in the File at
requestFilePath.
processEarningsVerificationResponses | String ProcessthelEanﬂngs

responsesFilePath

Verification Responses
contained in the File at
responseFilePath.

processSeparationRequests String PﬂxmsstheSepmaﬂon
requestskFilePath | Raquests contained in
the File at
requestFilePath.
processSeparationResponses String Process the Separation

responsesFilePath

Responses contained in
the File at
responseFilePath.

7.2.5.1.5 .Net (C#) XML Construct

Table 76 — BRPT .Net(C#) XML Construct

Method Name

Parameters

Description

processEarningVerificationRequests

XMLReader
requestsStreamReader

Process the Earnings
Verification Requests
contained within the
XMLReader
requestStreamReader.

processEarningsVerificationResponses

XMLReader
responsesStreamReade
r

Process the Earnings
Verification
Responses contained
within the
XMLReader
responsesReader.

processSeparationRequests

XMLReader
requestsStreamReader

Process the
Separation Requests
contained within the

SIDESY

193

Method Name Parameters Description
XMLReader
requestStreamReader.
processSeparationResponses XMLReader Process the

responsesStreamReade
r

Separation Responses
contained within the

XMLReader
responsesReader.
7.2.5.1.6 .Net (C#) Data Transfer Object
Table 77 — BRPT .Net (C#) Data Transfer Object
Method Name Parameters Description

processEarningVerificationRequests

StateEarningsVerifi
cationRequestCollec
tion requests

Process the Earnings
Verification Requests
contained within the
requests Data Transfer
Obiject.

processEarningsVerificationResponses

EmployerTPAEarnings
VerificationRespons
eCollection
responses

Process the Earnings
Verification
Responses contained
within the responses
Data Transfer Object.

processSeparationRequests

StateSeparationRequ
estCollection
requests

Process the Separation
Requests contained
within the requests
Data Transfer Object.

processSeparationResponses

EmployerTPASeparati
onResponseCollectio
n responses

Process the Separation
Responses contained
within the responses
Data Transfer Object.

7.2.5.2 Return from Business Rules Processing Tool

The return from a call to the BRPT is an object type that contains the status information and
Error Codes that are passed back to the state and employer/TPA from the call to a Broker.

SIDESY

194

For the Earnings Verification calls, it simulates the XML in the form of
StateEarningsVerificationRequestCollectionAcknowledgement and
EmployerTPAEarningsVerificationResponseCollectionAcknowledgement defined in the
Earnings Verification Request and Earnings Verification Response XSD, except it has already
been transformed into an object.

For the Separation Information calls, it simulates the XML in the form of
StateSeparationRequestCollectionAcknowledgement and
EmployerTPASeparationResponseCollectionAcknowledgement defined in the Separation
Request and Separation Response XSD, except it has already been transformed into an object.

7.2.5.3 Example Invocation of the Business Rules Processing Tool

The following code snippets give examples of the invocation of the Separation Information code
once the libraries are included in the project.

7.2.5.3.1 Java Example Invocation

7.2.5.3.1.1 State Java Example Invocation

// State
RequestBRProcessorImpl client = RequestBRProcessorImpl.getInstance();

// State Invocation with File Name s
StateSeparationRequestCollectionAcknowledgement requestDto =
client.processSeparationRequests ((String) s);

// State Invocation with XML Stream Reader xsr
StateSeparationRequestCollectionAcknowledgement responseDto
client.processSeparationRequests (xsr) ;

// State Invocation with DTO requests
StateSeparationRequestCollectionAcknowledgement responseDto =
client.processSeparationRequests (requests) ;

7.2.5.3.1.2 Employer/TPA Java Example Invocation

// Employer/TPA
ResponseBRProcessorImpl client = ResponseBRProcessorImpl.getlInstance();

// Employer/TPA Invocation with File Name s
EmployerTPASeparationResponseCollectionAcknowledgement responseDto =
client.processSeparationResponses ((String) s);

// Employer/TPA Invocation with XML Stream Reader =xsr

EmployerTPASeparationResponseCollectionAcknowledgement responseDto =
client.processSeparationResponses (xsr) ;

// Employer/TPA Invocation with DTO responses
EmployerTPASeparationResponseCollectionAcknowledgement responseDto =
client.processSeparationResponses (responses) ;

SIDESY 105

7.2.5.3.2 .Net Example Invocation

7.2.5.3.2.1 State .Net Example Invocation
// State

RequestBRProcessorImpl me = new RequestBRProcessorImpl () ;

// State Invocation with File Name fileNameObj
StateSeparationRequestCollectionAcknowledgement ack =
me.processSeparationRequests (fileNameObj.ToString()) ;

// State Invocation with XML Reader =xr
StateSeparationRequestCollectionAcknowledgement ack =
me.processSeparationRequests (Xr) ;

// State Invocation with DTO requests

StateSeparationRequestCollectionAcknowledgement ack =
me.processSeparationRequests (requests) ;

7.2.5.3.2.2 Employer/TPA .Net Example Invocation

// Employer/TPA

ResponseBRProcessorImpl me = new ResponseBRProcessorImpl () ;

// Employer/TPA Invocation with File Name fileNameOb]j
EmployerTPASeparationResponseCollectionAcknowledgement
me.processSeparationResponses (fileNameObj.ToString()) ;

// Employer/TPA Invocation with XML Reader xr
EmployerTPASeparationResponseCollectionAcknowledgement
me.processSeparationResponses (Xr) ;

// Employer/TPA Invocation with DTO responses

EmployerTPASeparationResponseCollectionAcknowledgement
me.processSeparationResponses (responses) ;

SIDESY.

ack

ack

ack

196

8 F-CONNECT WITH THE CENTRAL BROKER: CERTIFYING CONNECTOR
SOFTWARE

This section provides details and discussion on the final testing process where the connector
must certify it is ready to interface with the production Central Broker. This is a critical section
as the connector software must pass the certification tests before being allowed to enter
production with SIDES.

8.1 Certification

To utilize the SIDES Central Broker platform, the state,

employer or TPA connector software must meet a set of NOTE: In order to
agreed upon business rule validation requirements. A key perform the connector
requirement of SIDES is to ensure the quality and integrity of certification test, a
data exchanged between connectors. To meet this connector must ensure

requirement, the Central Broker performs edit validation and | that their software is
business rule validation on the data it receives, and connectors | developed with the

must validate the data locally prior to submitting. This capability to allow the
section describes the process SIDES will use to certify that a injection of Certification
connector has correctly implemented its validations prior to data. See Section 9.2.2.1

enabling access to the production Ul SIDES Central Broker.

A connector may use different technologies and programming languages to create their client
program, therefore the certification process does not inspect the client source code or design, but
relies instead on a set of input data and expected outcomes to test compliance. The only client
design features required for connector certification is the client's ability to load and use test data
from XML files (provided by the Central Broker), and the ability to produce a text log file or
database records listing any validation errors detected in supplied data.

Connectors will be provided with test XML files and a spreadsheet listing error codes and
associated test files; there is one set each for state and employer/TPA connectors. XML file sets
will contain both State Request and Employer Response data files. Both valid and invalid data
files will be included.

The connector certification process consists of two steps. First, the connector performs
preliminary certification testing. During the preliminary certification of the connector, a state or
employer/TPA representative will use their connector to submit SIDES-provided test data to the
Central Broker test environment. After processing each input file, the certifier will inspect
client logs to validate that all expected validation errors were caught, and the certifier will
validate that clean data was successfully passed to the Central Broker. The tester also needs to
ensure that all Central Broker message codes or business rule error codes are processed
appropriately by the connector software or back-end system. Validation results are recorded in
the provided spreadsheet.

The final certification test is initiated after the connector completes their preliminary certification
test. The SIDES Broker Administrator will review the connector’s test results spreadsheet and

SIDESY 197

all certification data files will be submitted to the SIDES Central Broker test environment. The
SIDES technical team will review the Central Broker reports to ensure expected results were
achieved and if so, the connector will be certified.

States, employers, and TPASs can use tools provided by the SIDES technical team to prepare for
certification. The tools include Model Connectors and the Business Rules Processing Tool
(BRPT), which provides a reference implementation for client-side validation. The BRPT tool is
implemented in both Java and C#. The BRPT graphical interface takes an XML data file as
input and validates it against the Central Broker business rules, reporting any errors. Connector
client developers can incorporate the BRPT source code as a data validation module into their
client program.

The Model Connectors built by the SIDES technical team are implemented in both Java and .Net.
The Model Connectors allow a connector to act as the opposite endpoint. As a result, the state,
employer or TPA may test their own connector software without having to rely on an outside
party to complete the round-trip exchange of information.

8.1.1 Certification Information

Connector certification is a required step that must be performed prior to production operations
or after any major change to the connector system. It is important that the connector software be
properly vetted so that valuable production time is not spent on items that could have been
prevented during connector testing.

Certification of the connector is achieved when:
e The expected results of the test data files match the actual test results from the connector.

e The connecter back-end processing is verified to handle / process all message codes or
business rule error codes.

e The connector handles duplicate processing.

The following process needs to be followed before a connector will be allowed to join SIDES in
production.

e Step 1 - Download the test suite of XML files and spreadsheets from the SIDES Website.
e Step 2 — Conduct preliminary connector certification testing.
o Step 2.1 — Run XML files through the connector.

o Step 2.2 — Compare the results obtained from your test system with the expected
results.

o Step 2.3 - Fill in the spreadsheet with the results of the test.
e Step 3 - Send the completed document to the SIDES Business Manager.
e Step 4 —Conduct final connector certification test.

SIDESY

198

8.1.1.1 Step 1 - Download Test Suite

The test suite can be found on the SIDES Website at http://sides.itsc.org. Navigate to the
Connector Certification section to download the following files from the folder that contains the
certification files for the exchange you want to be certified for:

e Client_Certification_State_worksheet.xls
e Client_Certification_Employer-TPA_worksheet.xls
e Certification_Data.zip

The Client_Certification_State _worksheet.xls file (for state connectors) and
Client_Certification_Employer-TPA_worksheet.xls file (for employer/TPA connectors) list both
valid and invalid files to be used during client certification. The spreadsheets also list test files
for duplicate processing, post message codes, and pull message codes.

For certification of state connectors, states will test business rule error codes associated with
valid request files and invalid request files. Valid request files are expected to be processed by
the connector software without business rule errors and to be successfully posted to the Central
Broker. Corresponding valid response files will be pulled from the Central Broker to test the
Pull message codes. Invalid requests are expected to be rejected by the connector software,
trapping specified business rule errors. State connectors must self-certify duplicate response
processing, post / pull message code handling, and attachment processing.

For certification of employer or TPA connectors, employers or TPAs will test business rule error
codes associated with valid response files and invalid response files. Valid response files are
expected to be processed by the connector software without business rule errors and to be
successfully posted to the Central Broker. Corresponding valid request files will be pulled
from the Central Broker to test the Pull message codes. Invalid responses are expected to be
rejected by the connector software, trapping specified business rule errors. Employer or TPA
connectors must self-certify duplicate request processing, post / pull message code handling, and
attachment processing.

The state, employer or TPA tester will fill out the highlighted rows in both tabs of their
worksheet and return the worksheet to the SIDES Business Manager.

8.1.1.1.1 Data Files

The individual data files are located inside the ‘XML datasets’ directory structure when the Test
Suite files are unzipped.

For Earnings Verification, within the ‘XML datasets’ directory are sub-directories that are
broken into logical groups based on the ClaimantEmployerWorkRelationship (ER-15), the
EmployerEarningsCode (ER-16) and the Status Codes requested. Within each sub-directory are
the data files. Data files may contain from 1 to 5 requests and associated responses. Also, there
is a Business Rules Error folder which test all business rules corresponding and a Boundary
Cases folder that tests the limits of each field.

SIDESY

199

http://sides.itsc.org/

For Separation Information, within the “XML datasets’ directory are sub-directories that are
broken into logic groups based on separation information reason codes (reason for separation).
Within each sub-directory are the data files. Data files may contain from 4 to 12 requests and
associated responses. These files test all business rules corresponding to the separation
information reason code.

A connector can manipulate the data file to ensure the data can be processed through the
connector software. For example, a state connector may be unable to process the provided
request data with the given StateEmployerAccountNbr and the connector may need to modify
the StateEmployerAccountNbr to successfully post the request to the Central Broker.
Similarly, a state connector may need to use their own StateRequestRecordGUID rather than the
one provided in the certification test data. When a connector prepares a response file, the
BrokerRecordTransactionNumber must be updated to match the
BrokerRecordTransactionNumber generated by the Central Broker. The SIDES team suggests
that connectors minimize changes to the certification test data to ensure the integrity of the
certification test.

The sIDES Central Broker requirements list a set of business rules, which State Request and
Employer/TPA Response data must satisfy prior to being transmitted by a connector. Each XML
file in the test suite contains a header that details the business rules being checked within the test
file.

Separation Request File Header

A sample header file for a state separation request XML data file follows below:

R-22 A

Table 78 — Separation Request File Header

Header

Category Results

File Condition This indicates whether this is a valid file or an invalid file. This will tell the
tester if the expected result is a successful pass through or a failure and errors
should be logged.

SIDESY

200

Header

Category Results
Errors This indicates whether the file has no errors, an XSD error or a business rule
error. Business rules errors are listed individually. More than one business
rules can be tested in the file.
A-22 This indicates the value of A-22 from the Separation Information Standard

Format in the request. This field is singled out as a critical field because it
will influence the business rules on both the request and response.

Separation Response File Header

A sample header file for an employer / TPA separation response XML data file follows below:

<!—— Employer/TPA Separation EResponse From BRE9999%3933G4 for State S5TGR
File Condition: ___ WValid File x Inwvalid File
Errors: ___ Homne
___ X5D
_x EBR 210 _ ER 211 _x EBR 212 ER 213
___ ER 214 _x BR 215 _ BER 216 _x BR 217
___ EBR 218 ___EBR 213 ___BR 220 ___EBR 221
___ BR 22z ___ BR 223 ___ BR 224 ___ BR 225
___BR 226 ___ BR 227 ___ BR 228 ___BR 225
___ER 230 ___EBR 231 ___ BR 232 ___EBR 233
___ ER 234 ___EBR 235 ___EBR 236 _x BR 237
___ ER 238 ___ EBER 239 ___ EBR 240 ___EBR 241
___ EBR 242 ___ EBR 243 ___ BR 244 ___ EBR 245
___ BR 246 ___ BR 247 ___ EBR 248 ___ BR 245
___ER 250 ___EBR 251 ___ BR 252 ___ BR 254
___ER 258 _x BR 257 = BR 258 __ BR 239
___ ER 280 ___ER Zsl ___ BR 2Ze2 ___ ER Ze3
BE 264

(BE 253 and BE 255 were deprecated)

_X WC (Reguires B-g&1)
___ WW (Requires B-61, B-62)

-
Table 79 — Separation Response File Header
Header Results
Category
File Condition This indicates whether this is a valid file or an invalid file. This will tell the

tester if the expected result is a successful pass through or a failure and errors

SIDESY.

201

Header
Category

Results

should be logged.

Errors

This indicates whether the file has no errors, an XSD error or a business rule
error. Business rules errors are listed individually. More than one business
rules can be tested in the file.

A-22 in Request

This indicates the value of A-22 from the Separation Information Standard
Format in the request. This field is singled out as a critical field because it
will influence the business rules on both the request and response.

Earnings Verification Request File Header

A sample header file for a state earnings verification request XML data file follows below:

<l—— State Earnings Verification Eedquest From 3T for Employer EBRSS599959399
File Condition: _ ¥ Walid File _ Inwalid File
Errors: _x_ HNone
___ E5D
___EC 31D
___Ec 311
__EC 31z
E-2Z0 [(Earnings) _3 2 - Field Required, Date Not Regquired
3 - Field Fedguired, Date Reguired, Date Paid
4 - Field Fecguired, Date Bedguired, Date Allocated
E-21 [(Tip=) 1 1 - Field not present/regquired
Z = Field Eedquired, Date Not Fequired
3 = Field Eedquired, Date Eequired, Date Paid
4 - Field Eecquired, Date Bedquired, Date Allocated
E-zZ2 [Commission) 1
E-23 [Eonus) 1
E-zZ4 [Vacation) 1
E-25 [Sick) 1
E-26 (Holiday) =
E-27 [Zeverance) =
E-28 [WagesInLien) 4
E-33 [EarningsVerificationResponseConment Indicator) 1 1 = Tes: Z = No
-

Table 80 — Earnings Verification Request File Header

Header
Category Results
File Condition This indicates whether this is a valid file or an invalid file. This will tell the

SIDESY.

202

Header

Category Results
tester if the expected result is a successful pass through or a failure and errors
should be logged.
Errors This indicates whether the file has no errors, an XSD error or a business rule

error. Business rules errors are listed individually. More than one business
rules can be tested in the file.

E-20 thru E-28 | This indicates the value of the Status Code from the Earnings Verification
Request fields E-20 thru E-28. These fields determine the Earnings
Verification Response fields that must be included in the Response.

E-33 This indicates the value of the Earnings Verification Response Comments
Indicator which tell the Employer/TPA whether they can have a comment
field to present further information.

Earnings Verification Response File Header

A sample header file for an employer / TPA earnings verification response XML data file
follows below:

SIDESY 203

<!—=— Employer/TFL Separation Response From BR999399993 for 3tate 3T

File Condition:

_x_Walid File

_ Inwvalid File

Errors: _x_ None
___ E3D
__ Eca1nd __ Ec411 __ Eca1z EC413
__ Ec414 __ Ec415 __ Ec41ln EC417
_ EC41s _ Ec41s _ EcC4zno EC4:1
_ Ec4zz _ Ec423 _ Ecdz4 EC4z25
_ EC4za _ EcC4z7 _ EC4zs EC4:9
_ Ec430 _ Ec431 _ Ec43Z EC433
__ Ec434d ___ Ec43s ___ Ec43a EC437
__ Ec43s _ Ec439 __ Ec44nd EC441
__ Ec4daz __ Ec443 __ Ecdad EC445
__ Ec4an __ Ec4s47 __ Ecaas EC449
___ Ec45no ___ Ec451 ___ Ec4hsz EC453
_ Ec454 __ Ec455 __ Ec45a EC457
__ Ec458 __ Ec453 __ Ec4s0 EC46l
_ EC4sz _ EC463
From Request:
E-zZ0 [(Earnings) _3_ 2 - Field Required, Date MNot Required
3 — Field Redquired, Date Redquired, L[Date FPaid
4 — Field Required, Date Required, Date bllocated
E-21 (Tip=) 1 1 - Field not present/required
z — Field Bequired, Date Not Required
3 — Field Redquired, Date Redquired, LDate Paid
4 — Field Becquired, Date Required, Date Lllocated
E-z2 [Commission) 1
E-23 [Bonus) 1
E-z4 [Wacation) 1
E-25 [Zick) 1
E-z6 (Holiday) <
E-27 [Fewverance) 3
E-Z5 (WagesInLieu] 4
E-33 {EarningsVWerificationResponseComment Indicator) 1 = Tes; 2 = No
-
Table 81 — Separation Response File Header
ey Results
Category
File Condition This indicates whether this is a valid file or an invalid file. This will tell the

should be logged.

tester if the expected result is a successful pass through or a failure and errors

Errors

This indicates whether the file has no errors, an XSD error or a business rule
error. Business rules errors are listed individually. More than one business

SIDESY.

204

Header

Category Results

rules can be tested in the file.

E-20 thru E-28 | This indicates the value of the Status Code from the Earnings Verification
Request fields E-20 thru E-28. These fields determine the Earnings
Verification Response fields that must be included in the Response.

E-33 This indicates the value of the Earnings Verification Response Comments
Indicator which tell the Employer/TPA whether they can have a comment
field to present further information.

8.1.1.1.2 Business Rule Validation

The certification data files will test the entire suite of SIDES business rules for either the state
connector, or employer or TPA connector, which are specified below. When the connector
software is successfully tested against each business rule, the connector will then be certified for
production operations.

Note: In the headers of the XML certification test data files for Separation Information, BR###
will return the Error Code ###. For example, BR101will return Error Code 101 in the
acknowledgement.

Example — State Separation Request:
Table 82 — State Request Business Rules/Error Codes

Business Rules Error Code
BR101 101
BR102 102
BR110 103

Example — Employer/TPA Separation Response:
Table 83 — Employer/TPA Response Business Rules/Error Codes

Business Rule Error Code
BR201 201
BR202 202

SIDESY 205

Business Rule Error Code

BR210 210

Note: In the headers of the XML certification test data files for Earnings Verification, EC###
will return the Error Code ###. For example, EC301will return Error Code 301 in the
acknowledgement.

Example — State Earnings Verification Request:
Table 84 — State Request Business Rules/Error Codes

Business Rules Error Code
EC301 301
EC310 303

Example — Employer/TPA Earnings Verification Response:
Table 85 — Employer/TPA Response Business Rules/Error Codes

Business Rule Error Code
EC401 401
EC410 410

8.1.1.2 Step 2 - Conduct Preliminary Connector Certification Testing

The bulk of the connector certification process takes place during the preliminary connector
testing step. During preliminary connector certification testing, the state, employer or TPA will
use their connector software and a Model Connector (one provided by the SIDES technical
support team or their own), and a test account to submit each certification test file through their
system to the SIDES Central Broker test environment.

For each certification test file that is submitted, the expected results (documented in the test file
headers) must be compared to the results returned from the SIDES Central Broker. Similarly,
all Central Broker message codes or error codes must be handled successfully by the connector
software or back-end system. Connectors must test duplicate processing and post / pull message
codes.

In the provided spreadsheets, test results must be documented. Specifically all highlighted cells

in both tabs of the worksheet must be filled out. If there are discrepancies such as the Enter Post
Message Code column is not equal to 1 (successfully posted to the Central Broker), the

SIDESY

206

connector software engineers must investigate the issue and perform software remediation as
needed.

This process is completed for all certification test data files until all connector software results
match the expected results.

8.1.1.2.1 Step 2.1 — Run XML Files through the Connector

Each file within the test suite is an XML file that tests zero, one or more test conditions. The
valid files should pass through the connector software business rules and be passed on to the
Central Broker. The invalid files must be trapped by the connector software prior to delivery to
the Central Broker.

The injection point into the connector software is crucial to being able to perform this step in the
process. During design and development, the connector must have implemented an XML data
injection point that will accept XML files in the SIDES Standard format into the application
processing flow. The injection point to Post data to the Central Broker should be placed in the
connector software somewhere before the outgoing business rules are checked and the SOAP
message in completed. See Section 9.2.2.1

Example

An employer or TPA has chosen to test with the Separation Information response file

Code_3 15 Data Set_2 Response.xml. This file is an invalid file and tests the following
business rules: BR210, BR212, BR215, BR217, BR237, BR257, and BR258. Upon execution
of the connector, the data file is injected to Post a separation response to the Central Broker.
The file should produce errors and not be transmitted to the Central Broker.

SIDESY

207

on xsi!schemalocation="https://uidataexchange.org/schemas SsparationResponse.xsd" xmlns="https://uidatasxchange.org/schemas"

993GA for State SIGA

5
2R ER =
BR BR B
BR BR 5
5R ER EE
BR BR =
2R ER B
BR BR 5
3R BR El
BR BR B

. ER = ER =8
BR BR BR 2

<Empl. % esponse>
ID>30150000000000000000000000000000</

563015002</5
ffectiveDare>2007-10-14</ClainEffectiveDate>
aimNunbers>

Nbr>0000000</

»987654321<
1>663015001

vofWork>
yofWork>

epReasonCode>15<
>2008-10-14</
asonComments>No comments provided.</Employers
zson>Continued non-compliance with protocol.<
Date>2020-01-01</F. i
3! reInd>Y</Disc

WorkDate>

T>9724312108</Prepa
actName>
le>

ame>Jay Cook<)
itle>Project Manager</Frepare
axNbr>8725312108</Prepar xNbr>
1 dress>jcooké@jcpenney.com</PreparerEmailiddress>
Response>
esponseCollection>

8.1.1.2.1.1 Duplicate Records

During certification, a test must be run to determine NOTE: Because of the small. chance that
if the connector software can handle duplicate a GUID will be repeated by different
records. Duplicate records can occur for many States, employer/TPAs must ensure that
reasons, and because the Broker consolidates the Zolilth?r? Sé?t‘i R%qb“eSt_ Rt_ecord GUIDth'
records it passes on to a connector, the connector DD 115 SHETS EDSTEVENER (95 SUmERlig
. . similar) be used when determining if a
software not only has to handle duplicate records in . .
o record is a duplicate.
separate SOAP messages, but also within the same
SOAP message. It is critical that the connector software be able to handle both cases without
fail.

SIDESYA 208

There are data files created to test the connector for its ability to handle duplicates. The state has
a Duplicate_Response.xml file, and the employer/TPA has a Duplicate_Request.xml file. These
data files must be injected into the connector software to determine if the connector software
processes duplicate records appropriately. Since the SIDES technical support team cannot
validate connector back-end processing, the connector must self-certify its duplicate processing
functionality during internal testing. After connector testing, duplicate processing results must
be filled into the certification spreadsheet.

8.1.1.2.1.2 Message Codes

As part of the connector certification process, the connector software must be verified that it can
handle all message codes returned by the Central Broker in the SOAP message header. If the
connector software is coded correctly, message codes 2 (example of which is a file containing all
invalid records) and message codes 3 (file containing good and invalid records) should not be
encountered during certification testing with the Central Broker as the data files to be posted
are clean. Since the SIDES technical support team cannot validate connector back-end
processing, the connector must self-certify message codes. After connector testing, results must
be filled into the certification spreadsheet.

To support certification of message codes six (6) XML data files were produced. Three files will
be used to test requests (state posts) and three files to test responses (employer/TPA posts).

States will use the following files to test the message codes:

e Request_Message Code_1.xml — file contains good records and returns a message code =
1

e Request_Message Code_2.xml —file contains 1 bad record, which will return a message
code =2

e Request_Message Code_3.xml for the States — file contains 1 good record and 1 bad
record and it will return a message code = 3

For employers or TPAsS:

e Response_Message Code_1.xml-file contains good records and returns a message code

=1
e Response_Message Code_2.xml-file contains 1 bad record, which will return a message
code =2

e Response_Message Code_3.xml — file contains 1 good record and 1 bad record and it
will return a message code = 3

8.1.1.2.1.3 Attachments

As part of the connector certification process, the connector must verify that attachments
received via the Central Broker can be opened successfully and processed by the connector’s

SIDESY

209

back-end system (for those exchanges that have attachments; otherwise skip to the next section).
Since the SIDES technical support team cannot validate connector back-end processing, the
connector must self-certify attachment processing. After connector testing, results must be filled
into the certification spreadsheet. To support certification of attachments, two (2) XML data
files were produced. States will certify attachment processing using the Valid_Response_1.xml
file, and employers will use Valid_Request_1.xml file.

8.1.1.2.2 Step 2.2 - Compare Results

After each certification test file is run, the test results should be accessible to the tester. These
results can be inside a test log file or stored in the database. The method does not matter to the
SIDES technical support team as this is connector design specific.

Once the tester has the test results from the connector software, the tester should compare it to
the expected results, which is contained in the header of the test file. The results must be an
exact match of the expected results. Test files that were created to fail business rules may contain
2 or more errors in them. It is crucial that ALL errors be caught. The connector software or
back-end software must also be evaluated to ensure that Central Broker error codes or message
codes have been handled correctly.

The tester should also determined if the connector software caught different or too many errors.
If this is the case, the errors should be examined to determine whether they should have been
actually caught. The SIDES technical support team should be contacted with the discrepancy if
the connector cannot determine the problem (or determines there is a problem in the file).

Example

In the above example, BR210, BR212, BR215, BR217, BR237, BR257, and BR258 should be
identified as errors. They must be the only errors identified, but all of them must be identified.

8.1.1.2.3 Step 2.3 - Fill in the Spreadsheet

After the test is completed and the results are satisfactory, the tester should fill in all highlighted
cells in both tabs of the worksheet. For the Valid Request / Response Test tab, fill in the cells
under the heading “Enter Post Message Code” and

“Enter Pull Message Code” with the appropriate NOTE: Each request/ response file pair
message code returned by the Central Broker. Since must be individually tested (one at a time)
all request / response file pairs are valid requests, before going onto the next request /

response file pair. Otherwise, the Central
Broker will return a single response file
that has all responses posted aggregated
into a single file.

success can be determined if all request/response files
have a post message code = 1 and a pull message code =
1 and 2 (pulling from the Central Broker returns a 1 for
the file being returned and a 2 for the empty file).

SIDESY 210

For the duplicate processing test, fill in the columns “Performed Step? (Yes/No)”, “Did the State
System Identify Duplicates? (Yes/No)”, and “How are Duplicates Handled by the Back-End
System?”

It is the connector’s responsibility to test the processing of message codes returned by the
Central Broker. Ul agencies, employers, and TPAs must self-certify their message code
processing. After running connector in-house testing, fill in the Post Message Code and Pull
Message Code tables. For the Post Message Code table, fill in the columns “Did the Connector
System Record and Handle the File -Level Message Code Correctly? (Yes/No)” and “Did the
Back-End System Update the Individual Records Correctly? (Yes/No)”. Complete the Pull
Message Code table by filling in the column “Was the File - Level Pull Message Code handled
Correctly? (Yes/No)”.

Ul agencies, employers, and TPAs must self-certify their attachment processing (for those
exchanges that contain attachments). As part of the preliminary connector certification testing,
fill in the Attachment Processing table. Complete the columns “Was the Connector able to Open
the Attachment Successfully? (Yes/No)” and “Did the Back-End System Handle the Attachment
Correctly? (Yes/No)”. Entering “Yes” in these columns indicate that the attachments were able
to be opened successfully and the connector processed the attachments correctly.

For the Invalid Request Test tab, fill in the “Errors detected? (Yes/No)” and the “Back-end
Processing Handled Error? (Yes/No)” columns. In the “ Errors detected? (Yes/No)” column,
mark “Yes” if the actual output was different than the expected output. Mark “No” if the actual
and expected output is the same. The column “Back-end Processing Handled Error (Yes/No)”
must also be marked “Yes” if the connector or back-end system did not process the Central
Broker error code or message code successfully. Mark “No” if it did. Then continue on to the
next test.

8.1.1.3 Step 3 - Submit the Spreadsheet

After the tests are complete, the connector should have both tabs of the spreadsheet filled in and
the spreadsheet must be submitted to the SIDES Business Manager. Upon receipt of the
certification spreadsheet, the SIDES Business Manager and the connector will agree to the date
and time period to conduct the final SIDES certification test.

8.1.1.4 Step 4 - Conduct Final Connector Certification Test

When the connector has completed all preliminary certification tests, the final connector
certification test is performed.

During the final certification test, the connector will work in conjunction with the SIDES
technical support team to coordinate the re-submission of all files in the test suite to the Central
Broker test environment. The SIDES technical support team will work with the connectors to
stage data corresponding to their opposite connector. For example, state connectors will post
requests to the Central Broker test environment and the SIDES technical support team will
emulate the employer and post the matching response files to the Central Broker test
environment.

SIDESY

211

The Central Broker technical team will perform validation of the certification test through
inspection of system logs and examination of file transfer and record detail reports. Certification
of duplicate processing, post message codes, and pull message codes will be self-certified by the
connector. Self-certification is based on the spreadsheet (provided to the SIDES Business
Manager), which documents the connector’s preliminary connector certification test results.

The final certification test will run over an agreed upon time period. During this certification
timeframe, the connector must not send any files to the Central Broker otherwise the
certification test results will be contaminated with bad data.

Upon successful certification test, the connector will be notified that the software may be
promoted into the SIDES production environment. If the certification test was not successful, the
connector must remediate the problems and re-execute the certification test.

SIDESY

212

9 COMMON MISTAKES, THINGS TO REMEMBER, KEY DEVELOMENT
PITFALLS

9.1 Common Mistakes
9.1.1 Invalid To: and/or From:

One common mistake is to provide the ‘TO:” and ‘FROM:* SOAP headers in an incorrect
manner. The ‘TO:” and ‘FROM:’ must be in the form described in Section 4.3- SOAP Custom
Headers.

Most of the instances of this type seen by the Central Broker are when the two fields have been
reversed.

Also, the ‘TO:’ on Pulls must be to the Broker and not an individual connector.
9.1.2 Connector Not a Participant

The Unique IDs presented in Section 4.2.1 - Unique ID are the only participants SIDES
recognizes.

The most common error in this category is using older Unique IDs. (There was a change in
Employer/TPA Unique IDs to accommodate the SIDES Employer Website.)

Another common error is to omit one or more digits on the employer/TPA Unique ID. It will
always be a ‘BR’ followed by nine digits for a Ul SIDES Web services participant (as opposed to
an Ul sIDES Employer Website participant — which is the nine-digit Federal Employer
Identification Number).

9.1.3 Invalid SOAP Action

Without a properly defined SOAP Action, the Central Broker does not know how to process the
incoming message. REDACTED The state, employer, or TPA connector must handle this
situation by its HTTP response timeout-handling routine.

9.1.4 Incorrect/Missing Security

As discussed in Section 5 - C — BUILD THE CONNECTOR: securing the message, security is
of paramount concern to the Broker. When first beginning the process to connect with the
Broker, the hardest problems encountered involve security. The connector should make sure that
it is following all the security preparations for the message. If the connector believes it is doing
everything correctly, then it should get in touch with the Broker team to help debug the issue.

SIDESY 213

9.1.5 Central Broker Not Having Up-to-Date REDACTED Information
REDACTED

9.1.6 Date/Time on Server Not Accurate

The data and time on the server(s) that create the timestamp must be accurate.

REDACTED

9.1.7 Interpretation of Standard Format for Money Fields

Numeric fields defined in a standard format use a fixed-point representation of a number whose
total length is represented by the digits to the left of the decimal point and the fractional amount
is represented by the digits to the right of the decimal point. For example, the
TotalEarnedWages field in Separation Information is defined as numeric 15.2. This represents a
number (dollar amount) that can have 13 digits to the left of the decimal point and two digits to
the right of the decimal point. The largest number this field can contain is 9,999,999,999,999.99,
while the smallest number is 0.00.

9.1.8 State Employer Account Number

As per the SIDES standard formats, Ul agencies must pass the state employer account number to
employers and TPAs. The StateEmployerAccountNbr is a character field with a maximum
length of 20 bytes that the employer or TPA to locate the separating employer in their automated
systems. When implementing SIDES, it is essential that the Ul agency does not change the
StateEmployerAccountNbr that the employers or TPAs presently receives. For example, if an
employer or TPA presently receives a StateEmployerAccountNbr without a location code, please
ensure that location code is not appended to the StateEmployerAccountNbr. Otherwise, the
employer and TPA will not be able to respond to the request for separation information as the
employer cannot be looked up on their system.

9.2 Things to Remember

This section discusses some of the issues to be considered by a developer beyond the scope of
the connection to the Central Broker.

REDACTED

9.2.1 Existing Business System Modifications

SIDESY 214

Key aspects of a state, employer, or TPA connector solution are having a data store that
conforms to the standard separation request and response formats, being able to collect the
requisite request data from the claimants to populate the request part of the data store, deliver the
standard response data collected from an employer/TPA via the Broker, and integrate
imaging/document management technology into the solution.

So, in addition to the communications portion of the connector system, a state connector must be
able to consume and generate XML-based data and interact with the state’s end users
(adjudicators) in terms of delivery of the data to them for processing. For Separation
Information., request data may be collected from claimants as part of an Internet Claim Filing
application that includes “intelligent” fact finding such that the appropriate question/data flows
are presented based on the separation reason chosen by the claimant, or, alternatively, this
separation data may be collected during the fact finding by a Call Center agent using screens or
Web pages consistent with the separations request format.

It is very likely that employers and TPAs will provide attachments as part of their responses (for
exchanges that include attachments). Therefore states will need to be able to consume these
attachments, and organize and route them in accordance with their non-monetary adjudication
processes.

Finally, as a template for the user interface for delivery of the separation data to state non-
monetary adjudication staff for processing, the SIDES Employer Website can be an aid, as all the
applicable guestion for each response data element has been defined as well as the page flows for
each of the possible 22 separation reasons.

If an agency currently has a paper system you will need to consider what to do with the XML
data when it arrives with you. In the worst case, it can be printed out and used in the current
manner as in your existing process, but with the benefits of better data quality, no postal delays,
and no postage costs.

If an agency has an existing electronic system, a state and employer or TPA will need to make
sure that the SIDES XML data is interfaced into the target system successfully.

9.2.2 Error Handling

Discovering errors in the data sent to it is one of the important functions performed by the
Central Broker. But having connectors send records with errors wastes throughput and ties up
valuable Central Broker resources. This is one of the reasons why it is important that each
connector implement the business rules/validation on their systems also.

If, by chance, an error is received from the Central Broker, then more than just a correction
should be made to that record. A review needs to take place on why that data was allowed to be
sent to the Central Broker in the first place, and any corrections made to the connectors system
must be made (or a global change needs to take place with all connector systems and the Central
Broker if an inherent flaw is discovered).

9.2.2.1 XML Injection

SIDESY

215

To fully test the connector software and its interaction with the Central Broker, a set of XML
files has been created to simulate possible valid and invalid request and response files than may
be generated a member of SIDES. For the type of files the connector creates for a post, valid files
are to be passed on to the Central Broker for processing whereas invalid files are to be caught
by the connector software before the messaging takes place with the Central Broker. For the
type of files the connector accepts on a pull, valid files should be passed to the connectors’
backend and invalid files should be caught and flagged.

These XML files make up a certification package that must be run against the connector software
to validate that it is ready to run with the Central Broker in the production environment.
Therefore, these XML files must be able to be injected into the connector software at a point
before the business rules are checked within the connector software. States, Employers / TPAs
must be able to inject outgoing messages to the Central Broker, as the connector software must
check all their outgoing business rules.

SIDESY

216

Central
Broker
]

Internet

4 State/Employer/TPA Connector A
i
Security Security
Y
/
Y
Outgoing XML
Injection Point °
/
Data Data
Gathering Storing
- /

The XML files given as part of the Certification Process will contain all the information required
to determine what, if anything, is wrong with that file. A sample file is included below.

SIDESY

217

<?xml version="i.0"I>
<EmployerTPASsparationResponseCollection xsi:schemaLocation=

nttps://uidatasxchange.org/

hemas Separati

R

<1-- Employer/TFA Separation Response From BR9999993GA for Stace STGA

File Condition: _ Valid File _x TInvalid File

Errars: __ MNane
__ XsD
_x_BR 210 __ BER 211 ER 212 __ BR 213
__BR 214 _x BR 215 BR 216 _x_ BR 217
__ BR 218 BR 218 _ BR 220 __ BR 221
__BR 222 __ BR 223 __ BR 224 __ BR 225
__ BR 226 __ BR 227 __ BR 238 __ BR 229
__BR 230 __ BR 231 __ BR 232 ER 233
_ BR 234 __ BR 235 __ BR 236 BR 237
__BR 238 __ BR 239 __ BR 240 __ BR 241
_ BR 242 __ BR 243 BR 244 _ BR 245
__BR 246 __ BR 247 __ EBR 248 __ BR 249
__BR 250 __ BR 251 BR 252 __ BR 254
__ BR 256 _x BR 257 _= BR 258 __ BR 259
__ ER 260 ER 261 ER 262 __ ER 263
__ BR 262
(BR 253 and BR 255 were deprecaced)

A-22 in Request _ma
X WO (Requires B-61)
__ W (Requires B-61, B-62)

-
<EmployerTPASeparationResponse>
<StateRequestRecordSUID>3015: /Stat RecordGUID>
<BrokerRecordTransactionNumber>5951</BrokerRecordTransactionNumber>

<55M>563015002</ 550>
<ClaimEffectiveDate>2007-10-14</ClaimEffectiveDate>
<ClaimMunber>301500</Claintunbers
<StateEmployerAccountNbr>0000000</StateEmployerhccountlor>
<CorrectedEmployerName>J C Penny</CorrectedEmployerMames
<CorrectedStateEmplovericcountibr>0123456789</CorrectedStateEmployericcountibry
<CorrectedFEIN>987654321</CorrectedFEIN>
<0OTherS5N>663015001</0therS5N>
<ClaimantNameWorkedAsForEmployer>Bob Smith</ClaimantNameWorkedhsForEmplayer>
<ClaimantJobTitle>Customer Service Associate</ClaimantdobTitler
<SeasonalEmploymentInd>N</SeasonalEmploymentInd>
<EmployerReportedClaimantFirstDayofWork>2007-10-11</EmployerReporcedClaimancFirscD,
<EmployerReportedClaimantLastDayofWork>2008-10-14</EmployerReportedClaimantLastDay:
<EffectiveSeparationDate>2008-10-14</EffectiveSeparationDate>
<TotalEarnedWagesNesdedInd>1</TocalEarnediagesieededInd>
<TotalWeeksWorkedNeededInd>3</TotalWeeksWorkedNeededInd.
<WagesEarnedifrerClaimEffectiveDate>100.00</WagesEarnedifrerClainEffecriveDatey
<hverageWeeklyWage>0</AverageWesklyWage>
<EmployerSepReasonCode>15</EmployerSepReasonCodey <!-- 1-21 and 99 !
<ReturnToWorkDate>2008-10-14</ReturnToWorkDate>
<EmployerSepReasonComments>No comments provided.</EmployerSepReasonCommentss
<FinallncidentReason>Continued non-compliance with protocol.</FinallncidentReason>
<FinalIncidentDate>2020-01-01</FinalIncidentDate>
<DischargePolicyAwareInd>¥</DischargePolicyAwareInd>
<DischargePolicyAwareExplanationCode>V</DischargePolicyAwareExplanationCode>
<PriorIncidentOccurrences
<PriorIncidentDate>2020-01-01</PriorIncidentDate>
<PriorIncidentReason>Failed to follow established prototcol.</PriorIncidentRea
<PriorIncidentWarningInd>¥</PriorIncidentWarningInd>
<PriorIncidentWarningDate»2007-10-10</PriorIncidentWarningDace>
[4/PriorIncidentOccurrence>
<PreparerTypeCode>E</PreparerTypeCode> <!-— E T !-—>
<PreparerTelephonsNumberPlusExc>9724312108</PreparerTelephonelunberPlusExts
<PreparerContactName>Jay Cook</PreparerContactName>
<PreparerTitle>Project Manager</PreparerTitle>
<PreparerFaxNbr>9725312108</PreparerFaxibr>
<PreparerEmailiddress>jcooké@jcpenney.com</Preparerimailiddressy
</EmployerTPASeparationResponse>
</EmployerTPASeparationResponseCollections

>

9.2.3 Disaster Recovery
REDACTED

9.3 Key Development Pitfalls

9.3.1 Java-REDACTED
REDACTED

9.3.2 Spring-WS — Timestamp issue
REDACTED

SIDESVNS

ayofWorks
ofWork>

=son>

.xsd" xmlns="https://uidatasxchange.org/schemas" .

218

10 LIST OF FIGURES
Figure 1. Model Connector Post for ASCIH FIlESccviiieieie e 94

Figure 2. Model Connector PUll for ASCIH FIles.........coviiiiiii e 95

SIDESY 219

11 LIST OF TABLES

Table 1 — EXChange FOIMALooiviiiiieiec et 11
Table 2 — Separation Information Backfilled Datacceveiiiiiiiiiiiecee e 20
Table 3 — Earnings Verification Backfilled Data.............c.cccooveiieiiiii i 21
Table 4 - Unique IDs of Current Participating States...........ccooeieierininiiiriseeeee s 26
Table 5 - Unique IDs of Current Participating EmplOyer/TPAS........ccccccevveviiieieeie e 26
Table 6 — Post-Acknowledgement Message COUESccoiieieiiereeiesie e 28
Table 7 — Pull-Response MeSSage COUEScveiieiieiieiieiiieie ettt 28
Table 8 - Pull ACknowledgement COUEScoiiiiiiiiiieeeeeee s 28
Table 9 - State POSE t0 BIOKEYciiiiiiiiiieieee e 31
Table 10 - State Post to Broker - SIDES Employer Website...........ccccooevveieieiicce e, 31
Table 11 - Broker Acknowledgement to State POSt...........cccccoeiieieeii i 32
Table 12 - State Request to Broker (Regular PUlL)ccooooiiiiiiiieeee e 33
Table 13 - Broker Response to Request (Regular PUll)cccccveiieiiiiiiicccccceee e 34
Table 14 - State Acknowledgement to Broker (Regular PUll) ... 35
Table 15 - State Request to Broker (Re-Pull by StateSOAPTransactionNumber)...................... 35
Table 16 - Broker Response to Request (Re-Pull by StateSOAPTransactionNumber)................ 36
Table 17 -State Acknowledgment to Broker (Re-Pull by StateSOAPTransactionNumber) 37
Table 18 - State Request to Broker (Re-Pull by Date)..........ccoveirieiiiiiiieiseieee s 38
Table 19 - Broker Response to Request (Re-Pull by Date)cccevvveiieiiiicceece e, 39
Table 20 - State Acknowledgement to Broker (Re-Pull by Date)c.ccoovvviiieiiiiienie 40
Table 21 - EmpIOYer/TPA POSt t0 BIrOKEc.coiiiiiieiieecee ettt 40
Table 22 - Broker Acknowledgement to EMployer/TPA POSE ..o 41
Table 23 - Employer/TPA Request to Broker (Regular Pull)..........ccoovvviiiiiiniiicicc e, 42
SIDESY.

220

Table 24 - Broker Response to Request (Regular PUll) ..o 43
Table 25 - Employer/TPA Acknowledgment to Broker (Regular Pull)ccccoovevviiiiieiincnenn, 43

Table 26 - Employer/TPA Request to Broker (Re-Pull by
EmployerTPASOAPTIaNSaCtIONNUMDEL)........couiiiiiieiicie e ee e sre e sne e 44

Table 27 - Broker Response to Request (Re-Pull by EmployerTPASOAPTransactionNumber) 45

Table 28 - Employer/TPA Acknowledgment to Broker (Re-Pull by

EmployerTPASOAPTranSactionNUMDET)c..oiviiiiiiiiiiisieee e 46
Table 29 - Employer/TPA Request to Broker (Re-Pull by Date)cccocvevviieieeve i, 47
Table 30 - Broker Response to Request (Re-Pull by Date)ccccooviiiiiinininicieie e 48
Table 31 - Employer/TPA Acknowledgment to Broker (Re-Pull by Date)..........c.ccccovevvevieennne. 49
Table 33 - State POSE 10 BIOKETocuiiiiiiiieiieiee e 98
Table 34 - State Post to Broker - SIDES Employer WeDSIte............ccoccviiiirininiiec e 98
Table 35 - Broker Response to Request (Regular PUll)ccooeiiiiiiiiiiiice 100
Table 36 - State POSE t0 BIrOKETcociiiiiiiiiieeieie e 105
Table 37 - State Post to Broker - SIDES Employer WebSite............cccocvevevieeiiiic i 106
Table 38 - Broker Response to Request (Regular PUll)ccooeiiiiiiiiiiice e 107
Table 39 - EMployer POSt t0 BrOKETc..ccuiiiiiiiie ittt sva e 122
Table 40 - Broker Response to Request (Regular PUll)ccoooiiiiiiiiiiiieee e 124
Table 41 - Employer POSt t0 BrOKETc.ocuiiuiiiiiie ittt 128
Table 42 - Broker Response to Request (Regular PUll) ..o 129
Table 43 - ConfigParam OPLIONSc.ccviiiiiiie e re e 138
Table 44 — Spring State Post Model Connector Command Line Arguments..........cccceevervennnns 140
Table 45 — Spring State Pull Model Connector Command Line Argumentsccccceevvevnnenne. 141
Table 46 — Spring State Post Data File Model Connector Command Line Arguments 142
Table 47 — Spring State Pull Model Connector Command Line Argumentscccceevvevvnenne. 145
Table 48 - ConfigParam OPLIONSoiiiiiieieiei e 148
SIDESY.

221

Table 49 — Spring Employer/TPA Post Model Connector Command Line Arguments............. 149

Table 50 — Spring Employer/TPA Pull Model Connector Command Line Arguments.............. 150
Table 51 — Spring Employer/TPA Post Data File Model Connector Command Line Argumenti51
Table 52 — Spring Employer/TPA Pull Model Connector Command Line Arguments............. 153
Table 53 - APPSELtINGS OPLIONS.ccuiiiiiieiie et sre et e esreesaesreesreenee s 156
Table 54 — .Net (C#) State Post Model Connector Command Line Arguments.............cccouee.ne. 158
Table 55 — .Net (C#) State Pull Model Connector Command Line Arguments.............ccccveuene 159
Table 56 — .Net State Post Data File Model Connector Command Line Arguments.................. 161
Table 57 — .Net State Pull Model Connector Command Line Argumentsc.ccceevevieieennns 164
Table 58 - APPSELtINGS OPLIONS.cviiviiiiiiiiieieie ettt bbb eneas 166
Table 59 — .Net (C#) Employer Post Model Connector Command Line Arguments................. 168
Table 60 — .Net (C#) Employer Pull Model Connector Command Line Arguments.................. 170

Table 61 — .Net Employer/TPA Post Data File Model Connector Command Line Arguments. 172

Table 62 — .Net Employer/TPA Pull Model Connector Command Line Arguments................. 174
Table 63 - ConfigParam OPLIONScciiiiiiice et re e 176
Table 64 — JAX-WS State Post Model Connector Command Line Arguments............cc.ccoeeene 177
Table 65 — JAX-WS State Pull Model Connector Command Line Argumentscccceeue. 178
Table 66 — JAX-WS State Post Data File Model Connector Command Line Arguments.......... 179
Table 67 — JAX-WS State Pull Model Connector Command Line Argumentsccccveue. 182
Table 68 - CoNfigParam OPLIONSoiiiiiieieie e 184
Table 69 — JAX-WS Employer Post Model Connector Command Line Arguments 185
Table 70 — JAX-WS Employer Pull Model Connector Command Line Arguments.................. 186

Table 71 — JAX-WS Employer/TPA Post Data File Model Connector Command Line Arguments
... 187

Table 72 — JAX-WS Employer/TPA Pull Model Connector Command Line Arguments......... 189
SIDESV

222

Table 73 — BRPT JAVA XIML FIIE ..ot eeennennennene 190

Table 74 — BRPT Java XML CONSIIUCE.........coiviieiiiirieieisieieeses et 191
Table 75 — BRPT Java Data Transfer ODJECE..........cccoiiiiiiiiiieiecrcsee e 192
Table 76 — BRPT .Net (CH#) XML FIle ..o 193
Table 77 — BRPT .Net(C#) XML CONSLIUCT.......ccceiiiiieieiie e 193
Table 78 — BRPT .Net (C#) Data Transfer ODJecCt..........ccovvviieiiiieiiecece e 194
Table 79 — Separation Request File HEAEN ..o 200
Table 80 — Separation Response File HEAUerccvevviiiiieie e 201
Table 81 — Earnings Verification Request File HEAUEccooeiiiiiiiiiinieecec e 202
Table 82 — Separation Response File HEaderc.ccvevviiiiiicie e 204
Table 83 — State Request BuSIiNeSS RUIES/EITOr COUES.........ccvveruerieiiereeiesieenieeeesieesieseesseeeens 205
Table 84 — Employer/TPA Response Business Rules/Error Codes..........cccovvevveieivenesiieieennnns 205
Table 85 — State Request BuSIiNesS RUIES/EITOr COUES.........ccvueruerieiiereeiesieenieseesieesiesreesseeneens 206
Table 86 — Employer/TPA Response Business Rules/Error Codes..........cccovvevvrvieiivereiiieseennnns 206
SIDESY.

223

